332 Chapter 8. Sorting

For “randomly” ordered data, the operations count goes approximaté¥y'&s, at
least forN < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

void shell(unsigned long n, float all)
Sorts an array a[] into ascending numerical order by Shell's method (diminishing increment
sort). a is replaced on output by its sorted rearrangement. Normally, the argument n should
be set to the size of array a, but if n is smaller than this, then only the first n elements of a
are sorted. This feature is used in selip.
{
unsigned long i,j,inc;
float v;
inc=1; Determine the starting increment.
do {
inc *= 3;
inc++;
} while (inc <= n);
do { Loop over the partial sorts.
inc /= 3;
for (i=inc+1l;i<=n;i++) { Outer loop of straight insertion.
v=al[il;
j=i;
while (alj-inc] > v) { Inner loop of straight insertion.
al[jl=alj-inc];
j —= inc;
if (j <= inc) break;
¥
aljl=v;
}
} while (inc > 1);

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

Quicksort is, on most machines, on average, for la¥gethe fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element”a is selected from the array. Then by pairwise exchanges of elements, th
original array is partitioned into two subarrays. At the end of a round of partitioning,
the element is in its final place in the array. All elements in the left subarray are
< a, while all elements in the right subarray area. The process is then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning elemeat Scan a pointer up the array until you find
an element> a, and then scan another pointer down from the end of the array
until you find an elemenk a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers
cross. This is the right place to insertand that round of partitioning is done. The

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eouBwy qﬁ%N apIsino) 610°abplLqueI @AISSISNI0BIIP 0} [feWwd puas Jo ‘(Ajuo eouBWY YUON) £27/-2/8-008-T /€2 JO Wwod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

8.2 Quicksort 333

guestion of the best strategy when an element is equal to the partitioning element
is subtle; we refer you to Sedgewif for a discussion. (Answer: You should
stop and do an exchange.)

For speed of execution, we do not implement Quicksort using recursion. Thus
the algorithm requires an auxiliary array of storage, of ledtg , N, which it uses
as a push-down stack for keeping track of the pending subarrays. When a subarra
has gotten down to some si2d, it becomes faster to sort it by straight insertion
(88.1), so we will do this. The optimal setting @ff is machine dependent, but g
M = T is not too far wrong. Some people advocate leaving the short subarraysz
unsorted until the end, and then doing one giant insertion sort at the end. Sincg
each element moves at most 7 places, this is just as efficient as doing the sort3
immediately, and saves on the overhead. However, on modern machines with page
memory, there is increased overhead when dealing with a large array all at once. We =
have not found any advantage in saving the insertion sorts till the end.

As already mentioned, Quicksorgserage running time is fast, but itsvorst
case running time can be very slow: For the worst case it is, in factVanmethod!
And for the most straightforward implementation of Quicksort it turns out that the
worst case is achieved for an input array that is already in order! This orderin
of the input array might easily occur in practice. One way to avoid this is to use
a little random number generator to choose a random element as the partitionin
element. Another is to use instead the median of the first, middle, and last element
of the current subarray.

The great speed of Quicksort comes from the simplicity and efficiency of its
inner loop. Simply adding one unnecessary test (for example, a test that your pointef
has not moved off the end of the array) can almost double the running time! Oneg
avoids such unnecessary tests by placing “sentinels” at either end of the subarrai
being partitioned. The leftmost sentinel i$ a, the rightmost> a. With the
“median-of-three” selection of a partitioning element, we can use the two elementsz
that were not the median to be the sentinels for that subarray.

Our implementation closely follows]:

U<

ol

ol

-2.8-008-®I|

«Q
$Ruy YLON) €212
J19Indwod Janias Aue 01 (auo siyl Buipnjour) sajiy ajqepeal

@l

(Ajuo

10

p o}

#include "nrutil.h"

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

#define M 7

#define NSTACK 50

Here M is the size of subarrays sorted by straight insertion and NSTACK is the required auxiliary
storage.

void sort(unsigned long n, float arr[])
Sorts an array arr[1..n] into ascending numerical order using the Quicksort algorithm. n is
input; arr is replaced on output by its sorted rearrangement.
{
unsigned long i,ir=n,j,k,1=1,*istack;
int jstack=0;
float a,temp;

‘(eauBWyY YUON apisino) Bio abpugqued@AIasisnold

8)ISgaM NISIA ‘SINOHAD 10 sxo0q sadiday [eduswnp 18pJo o] ‘pauqgiyold Apouis si
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

istack=1lvector (1,NSTACK) ;
for (;;) { Insertion sort when subarray small enough.
if (ir-1 < M) {
for (j=1+1;j<=ir;j++) {
a=arr[jl;
for (i=j-1;i>=1;i--) {
if (arr[i] <= a) break;
arr[i+1]=arr[i];

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

334 Chapter 8. Sorting

}
arr[i+1]=a;
}
if (jstack == 0) break;
ir=istack[jstack--1; Pop stack and begin a new round of parti-
l=istack[jstack--]; tioning.
} else {
k=(1+ir) >> 1; Choose median of left, center, and right el-
SWAP (arr [k] ,arr[1+1]) ements as partitioning element a. Also
if (arr[1] > arrl[ir]) { rearrange so that a[1] < a[1+1] < alir].

SWAP(arr[1],arr[ir])

}
if (arr[1+1] > arrlir]) {
SWAP (arr [1+1] ,arr[ir])

}

if (arr[l] > arr[1+1]) {
SWAP(arr[1],arr[1+1])

}

i=1+1; Initialize pointers for partitioning.

j=ir;

a=arr[1+1]; Partitioning element.

for (;;) { Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[jl); Exchange elements.

} End of innermost loop.

arr[l+1]=arr([j]l; Insert partitioning element.

arr[jl=a;

jstack += 2;

Push pointers to larger subarray on stack, process smaller subarray immediately.
if (jstack > NSTACK) nrerror("NSTACK too small in sort.");
if (ir-i+1 >= j-1) {
istack[jstack]=ir;
istack[jstack-1]=1;
ir=j-1;
} else {
istack[jstackl=j-1;
istack[jstack-1]=1;
1=1;

}
}
free_lvector(istack,1,NSTACK);

As usual you can move any other arrays around at the same time as you so
arr. At the risk of being repetitious:

#include "nrutil.h"

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;
#define M 7

#define NSTACK 50

void sort2(unsigned long n, float arr[], float brr[])
Sorts an array arr [1. .n] into ascending order using Quicksort, while making the corresponding
rearrangement of the array brr[1..n].
{
unsigned long i,ir=n,j,k,1=1,*istack;
int jstack=0;
float a,b,temp;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eollaWy YUON apisiho) B10°aBpLIqUIRI @AIBSISN103IIP 0 [reWd PUds J0 ‘(A|Uo BouBWY YUON) £27/-2/8-008-T |2 J0 Wod"Jummm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

8.2 Quicksort 335

istack=1lvector (1,NSTACK) ;
for (;;) { Insertion sort when subarray small enough.
if (ir-1 < M) {

for (j=1+1;j<=ir;j++) {
a=arr[jl;
b=brr[jl;
for (i=j-1;i>=1;i--) {
if (arr[i] <= a) break;
arr[i+1]=arr[il;
brr[i+1]=brr[i];
}
arr[i+1]=a;
brr[i+1]=b;
}
if (!jstack) {
free_lvector(istack,1,NSTACK) ;

} else {

return;
}
ir=istack[jstack]; Pop stack and begin a new round of parti-
l=istack[jstack-1]; tioning.
jstack -= 2;
k=(1+ir) >> 1; Choose median of left, center and right el-
SWAP (arr [k] ,arr[1+1]) ements as partitioning element a. Also
SWAP (brr [k] ,brr[1+1]) rearrange so that a[1] < a[1+1] < alir].

if (arr[1] > arrlir]) {
SWAP (arr[1],arr[ir])
SWAP (brr [1] ,brr[ir])

if (arr[1+1] > arrlir]) {
SWAP (arr [1+1] ,arr[ir])
SWAP (brr[1+1] ,brr[ir])

if (arr[1l] > arr[1+1]) {
SWAP (arr[1],arr[1+1])
SWAP (brr [1] ,brr[1+1])

}

i=1+1; Initialize pointers for partitioning.

j=ir;

a=arr[1+1]; Partitioning element.

b=brr[1+1];

for (;;) { Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP (arr[i],arr[j]) Exchange elements of both arrays.
SWAP (brr[i],brr[j]l)

} End of innermost loop.

arr[1+1]=arr[j]; Insert partitioning element in both arrays.

arr[jl=a;

brr[1+1]=brr[j]l;

brr[jl=b;

jstack += 2;

Push pointers to larger subarray on stack, process smaller subarray immediately.
if (jstack > NSTACK) nrerror("NSTACK too small in sort2.");
if (ir-i+1 >= j-1) {
istack[jstack]=ir;
istack[jstack-1]=1i;
ir=j-1;
} else {
istack[jstackl=j-1;
istack[jstack-1]=1;
1=i;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

336 Chapter 8. Sorting

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as descrilj8diin

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847-857. [1]

8.3 Heapsort

) £21£-2/8-008-T [[€2 10 WOD" AU mmm//:dny

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It is a true “in-place” sort, requiring no auxiliary storage. It is an
N log, N process, notonly on average, but also for the worst-case order of input data
In fact, its worst case is only 20 percent or so worse than its average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the refereiicdsor
analyze the program yourself, if you want to understand the details.

A set of N numbersa;, i = 1,..., N, is said to form a “heap” if it satisfies
the relation

iy yuoN

Here the division inj/2 means “integer divide,” i.e., is an exact integer or else is
rounded down to the closest integer. Definition (8.3.1) will make sense if you think
of the numbersg; as being arranged in a binary tree, with the top, “boss,” node being
a1, the two “underling” nodes being, andas, their four underling nodes being,
througha, etc. (See Figure 8.3.1.) Inthis form, a heap has every “supervisor” greate
than or equal to its two “supervisees,” down through the levels of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap
then sorting it is very easy: You pull off the “top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its larges
underling. Then you promoti¢s largest underling, and so on. The process is like
what happens (or is supposed to happen) in a large corporation when the chairm
of the board retires. You then repeat the whole process by retiring the new chairma
of the board. Evidently the whole thing is &hlog, N process, since each retiring
chairman leads tdog, N promotions of underlings.

Well, how do you arrange the array into a heap in the first place? The answer
is again a “sift-up” process like corporate promotion. Imagine that the corporation
starts out withV/2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.
After supervisors are hired, then supervisors of supervisors are hired, and so on up

©AISSISN0108.IP 0] [reWa Puas Jo ‘(Ajuo eoua

plugwes

=

Bpisino) 1o ab

§-‘£ yuoN
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

G,

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

