Chapter 6. Special Functions

6.0 Introduction

There is nothing particularly special about a special function, except that
some person in authority or textbook writer (not the same thing!) has decided to
bestow the moniker. Special functions are sometimes called higher transcendental
functions (higher than what?) or functions of mathematical physics (but they occur in
other fields also) or functions that satisfy certain frequently occurring second-order
differential equations (but not all special functions do). One might simply call them
“useful functions” and let it go at that; it is surely only a matter of taste which
functions we have chosen to include in this chapter.

Good commercially available program libraries, such asNAG or IMSL, contain
routinesfor anumber of special functions. These routines are intended for users who
will have no idea what goes on inside them. Such state of the art “black boxes’ are
often very messy things, full of branchesto completely different methods depending
on the value of the calling arguments. Black boxes have, or should have, careful
control of accuracy, to some stated uniform precision in al regimes.

We will not be quite so fastidious in our examples, in part because we want
to illustrate techniques from Chapter 5, and in part because we want you to
understand what goes on in the routines presented. Some of our routines have an
accuracy parameter that can be made as small as desired, while others (especially
those involving polynomial fits) give only a certain accuracy, one that we believe
serviceable (typically six significant figures or more). We do not certify that the
routines are perfect black boxes. We do hope that, if you ever encounter trouble
in a routine, you will be able to diagnose and correct the problem on the basis of
the information that we have given.

In short, the special function routines of this chapter are meant to be used —
we use them all the time — but we also want you to be prepared to understand
their inner workings.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York) [full of useful numerical approximations to a great variety
of functions].

IMSL Sfun/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042).

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
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Hart, J.F, et al. 1968, Computer Approximations (New York: Wiley).
Hastings, C. 1955, Approximations for Digital Computers (Princeton: Princeton University Press).
Luke, Y.L. 1975, Mathematical Functions and Their Approximations (New York: Academic Press).

6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integral

I'(z) = /000 t*~te~tat (6.1.1)

When the argument z is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n!l=T(n+1) (6.1.2)
The gamma function satisfies the recurrence relation
I(z+1)=2I'(2) (6.1.3)

If the function is known for arguments z > 1 or, more generally, in the half complex
planeRe(z) > 1 it canbeobtainedfor = < 1 or Re (z) < 1 by thereflection formula
™ Tz

T —-z)= T(z)sin(rz) D(1 + z)sin(rz) (6:1.4)

Notice that T'(z) hasapoleat = = 0, and at all negative integer values of z.

There are a variety of methods in use for calculating the function T'(z)
numerically, but none is quite as neat as the approximation derived by Lanczos [1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certaininteger choicesof v and IV, and for certain coefficients
c1,co,. .., cn, the gamma function is given by

Fz+1)=(z+7v+ %)Z+%e_(z+7+%)

(6.1.5)

C1 C2 CN
X V2 -
71-Co—i_z—l—l+z—i—2+ +2+N

+e|l (2>0)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constant ¢ isvery nearly equal to 1. The error termis parametrized by e.
For v =5, N = 6, and acertain set of ¢’s, the error is smaller than |e| < 2 x 10~1°.
Impressed? If not, then perhaps you will be impressed by the fact that (with these
same parameters) the formula (6.1.5) and bound on e apply for the complex gamma
function, everywhere in the half complex plane Re z > 0.
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