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5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted T',,(z), and is given by
the explicit formula

T, (z) = cos(n arccos x) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for T,,(x) (see Figure 5.8.1),

2
=4z’ — 3z (5.8.2)
8

Tni1(x) = 22T, () — Tho1(z) n>1.

(There also exist inverse formulas for the powers of = in terms of the T',,'s — see
equations 5.11.2-5.11.3))

The Chebyshev polynomialsare orthogonal in theinterval [—1, 1] over aweight
(1 —22)~'/2, In particular,

'Lene, [0 17
/_1 Vg dx = {w/2 i=j#0 (5.8.3)

™ i=j=0

The polynomial T',(z) has n zerosin theinterval [—1, 1], and they are located
at the points

k-1
T = oS (M) k=1,2,....n (5.8.4)
In this same interval there are n + 1 extrema (maximaand minima), located at
T = cos (W—k) k=0,1,...,n (5.8.5)
n

At al of the maxima T,,(x) = 1, while a al of the minima T,,(z) = —1;
it is precisely this property that makes the Chebyshev polynomials so useful in
polynomial approximation of functions.
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5.8 Chebyshev Approximation 191

Chebyshev polynomials

Figure 5.8.1. Chebyshev polynomials Ty (x) through Ts(x). Note that T; has j roots in the interval
(—1,1) and that all the polynomials are bounded between +1.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): If z (k = 1,...,m) are the m zeros of T;,,(z) given
by (5.84), and if 7,j < m, then

n 0 i#j
D Ti(wi)Tj(ar) = {m/2 i=j#0 (5.86)

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: If f(z) isan arbitrary functionin theinterval [—1, 1], and if
N coefficients ¢;,j = 0,..., N — 1, are defined by

2 N
G =5 > Flar) Ty ()
k=
2 N1 . %) e %) (5.8.7)
= — f [cos <7>} cos <7>
N ; N N
then the approximation formula
N-1 1
fz) = lz exTi(z) | — 50 (5.8.8)
k=0
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192 Chapter 5.  Evaluation of Functions

is exact for = equd to al of the N zeros of T'x(z).

For afixed N, equation (5.8.8) is a polynomial in = which approximates the
function f(x) intheinterval [—1, 1] (whereall the zeros of T'y () arelocated). Why
isthis particular approximating polynomial better than any other one, exact on some
other set of NV points? The answer is not that (5.8.8) is necessarily more accurate
than some other approximating polynomial of the same order NV (for some specified
definition of “accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lower degreem < N inavery graceful way, onethat doesyield the “most accurate”
approximation of degree m (in a sense that can be made precise). Suppose N is
so large that (5.8.8) is virtually a perfect approximation of f(z). Now consider
the truncated approximation

m—1
f(z) ~ [Z erTi(x)

k=0

1
- 3¢ (5.8.9)

with the same ¢;’s, computed from (5.8.7). Since the T (x)’s are all bounded
between +1, the difference between (5.8.9) and (5.8.8) can be no larger than the
sum of the neglected c’'s (k = m,..., N — 1). In fact, if the ¢;’s are rapidly
decreasing (which is the typical case), then the error is dominated by ¢,,, T, (),
an oscillatory function with m + 1 egual extrema distributed smoothly over the
interval [—1, 1]. This smooth spreading out of the error is avery important property:
The Chebyshev approximation (5.8.9) is very nearly the same polynomial as that
holy grail of approximating polynomials the minimax polynomial, which (among all
polynomials of the same degree) has the smallest maximum deviation from the true
function f(x). The minimax polynomia is very difficult to find; the Chebyshev
approximating polynomial is ailmost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f(z), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
¢'s and choice of atruncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f(x) for al subsequent time.

Thefirst of these tasks is straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limitsa and b, instead of just —1 to 1. Thisiseffected by achangeof variable

z—%(b+a)
3(b—a)
and by the approximation of f(z) by a Chebyshev polynomia in y.

y (5.8.10)

#include <math.h>
#include "nrutil.h"
#define PI 3.141592653589793

void chebft(float a, float b, float c[], int n, float (*func)(float))
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and a
maximum degree n, this routine computes the n coefficients ¢ [0. .n-1] such that func(z) =~

[22;% ¢ Tk (y)] — co/2, where y and x are related by (5.8.10). This routine is to be used with
moderately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated at the smaller
value m such that c,, and subsequent elements are negligible.
{

int k,j;

float fac,bpa,bma,x*f;
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5.8 Chebyshev Approximation 193

f=vector(0,n-1);
bma=0.5%(b-a) ;
bpa=0.5%(b+a) ;

for (k=0;k<n;k++) { We evaluate the function at the n points required
float y=cos(PI*(k+0.5)/n); by (5.8.7).
f [k]=(*func) (y*bma+bpa) ;
}
fac=2.0/n;
for (j=0;j<n;j++) {
double sum=0.0; We will accumulate the sum in double precision,
for (k=0;k<n;k++) a nicety that you can ignore.
sum += f[k]*cos(PI*j*(k+0.5)/n);
c[jl=fac*sum;
}

free_vector(f,0,n-1);

(If you find that the executiontime of chebft isdominated by the calculation of
N2 cosines, rather than by the IV evaluations of your function, then you should look
ahead to §12.3, especially equation 12.3.22, which shows how fast cosine transform
methods can be used to evaluate equation 5.8.7.)

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Ty (x) from Ty = 1,71 = z, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.5), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrenceis

dm+1 = dm =

dj =20djy1 —djpa ¢ j=Em—1lm=2....1  (ggqq

1
f(I) = do = Idl — dg + 560

float chebev(float a, float b, float c[], int m, float x)

Chebyshev evaluation: All arguments are input. c[0..m-1] is an array of Chebyshev coeffi-
cients, the first m elements of ¢ output from chebft (which must have been called with the
same a and b). The Chebyshev polynomial EI]?;% crTi(y) — co/2 is evaluated at a point
y =[x — (b+a)/2]/[(b — a)/2], and the result is returned as the function value.

{

void nrerror(char error_text[]);
float d=0.0,dd=0.0,sv,y,y2;

int j;

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev");

y2=2.0%(y=(2.0*x-a-b)/(b-a)); Change of variable.
for (j=m-1;j>=1;j--) { Clenshaw's recurrence.
sv=d;
d=y2x*d-dd+c[j];
dd=sv;
}
return y*d-dd+0.5%c[0]; Last step is different.
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194 Chapter 5.  Evaluation of Functions

If we are approximating an even function on the interval [—1, 1], its expansion
will involve only even Chebyshev polynomials. It is wasteful to call chebev with
all the odd coefficients zero [1]. Instead, using the half-angle identity for the cosine
in equation (5.8.1), we get the relation

Ton(z) = Tn(22% — 1) (5.8.12)

Thus we can evaluate a series of even Chebyshev polynomials by calling chebev
with the even coefficients stored consecutively in the array ¢, but with the argument
x replaced by 222 — 1.

An odd function will have an expansion involving only odd Chebyshev poly-
nomials. It is best to rewrite it as an expansion for the function f(z)/x, which
involves only even Chebyshev polynomials. This will give accurate values for
f(z)/x near x = 0. The coefficients ¢/, for f(x)/x can be found from those for
f(x) by recurrence:

, (5.8.13)
1=2¢n — Cpyq, n=N-1,N-3,...

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).

If youinsist on evaluating an odd Chebyshev series, the efficient way isto once
again use chebev with z replaced by y = 222 — 1, and with the odd coefficients
stored consecutively in the array c. Now, however, you must also change the last
formula in equation (5.8.11) to be

f(z) = z[(2y — 1)d1 — d2 + ¢ (5.8.14)

and change the corresponding line in chebev.
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5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195

5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a functionin
a certain range (e.g., from chebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ¢;, ¢ = 0,...,m — 1 are the coefficients
that approximate a function f in equation (5.8.9), C; are the coefficients that
approximatethe indefiniteintegral of f, and ¢/ are the coefficients that approximate
the derivative of f, then

Ci—1 — Cit+1

Ci=
2i

(i > 0) (5.9.1)
Cio1 = Ciyq + 2ic; (i=m-1,m-2,...,1) (5.9.2)

Equation (5.9.1) isaugmented by an arbitrary choice of C, correspondingto an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
withthevalues ¢, = ¢,,_; = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f.

Here are routines for implementing equations (5.9.1) and (5.9.2).

void chder(float a, float b, float c[], float cder[], int n)
Given a,b,c[0..n-1], as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cder[0..n-1], the
Chebyshev coefficients of the derivative of the function whose coefficients are c.
{

int j;

float con;

cder[n-1]=0.0; n-1 and n-2 are special cases.

cder [n-2]=2%(n-1) *c[n-1];
for (j=n-3;j>=0;j--)

cder[jl=cder[j+2]+2*(j+1)*c[j+1]; Equation (5.9.2).
con=2.0/(b-a);
for (j=0;j<n;j++) Normalize to the interval b-a.

cder[j] *= con;

void chint(float a, float b, float c[], float cint[], int n)
Given a,b,c[0..n-1], as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cint[0..n-1], the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant of
integration is set so that the integral vanishes at a.
{

int j;

float sum=0.0,fac=1.0,con;

con=0.25%(b-a); Factor that normalizes to the interval b-a.
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