186 Chapter 5. Evaluation of Functions

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function f(z), and now
you want to compute its derivative f/(z). Easy, right? The definition of the
derivative, the limit as h — 0 of

f'(x) ~ w (5.7.1)

practically suggests the program: Pick a small value h; evaluate f(x + h); you
probably have f(x) already evaluated, but if not, do it too; finaly apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is fiercely expensive to compuite,
when you already have invested in computing f(x), and when, therefore, you want
to get the derivative in no more than asingle additional function evaluation. In such
asituation, the remaining issue is to choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher termsin the Taylor series expansion,

P+ h) = @)+ hF@) + 20" @) + R @) 4 (872)

whence

flz+h) - fz)

- =f+ %hf” T (5.7.3)

The roundoff error has various contributions. First there is roundoff error in h:
Suppose, by way of an example, that you are at a point z = 10.3 and you blindly
choose h = 0.0001. Neither x = 10.3 nor x + h = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fractional
error characteristic of the machine'sfloating-point format, ¢ ,,,, whose valuein single
precision may be ~ 10~7. Theerror inthe effective value of h, namely the difference
between x + h and z as represented in the machine, istherefore on the order of € ,,, ,
whichimpliesafractional error in h of order ~ ¢,,,2/h ~ 10~2! By equation (5.7.1)
thisimmediately implies at least the same large fractional error in the derivative.
We arriveat Lesson 1: Always choose h so that = + h and « differ by an exactly
representable number. This can usually be accomplished by the program steps

temp=z+h

(5.7.4)
h =temp—z

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is
usually enough to declare temp as volatile, or else to call a dummy function
donothing (temp) between the two equations (5.7.4). This forces temp into and
out of addressable memory.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

5.7 Numerical Derivatives 187

With h an “exact” number, the roundoff error in equation (5.7.1) is e, ~
er|f(x)/h|. Here ey is the fractional accuracy with which f is computed; for a
simple function this may be comparable to the machine accuracy, € ¢ ~ €, but for a
complicated calculation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order of e, ~ |hf”(z)|. Varying h to
minimize the sum e,. + ¢; gives the optimal choice of A,

he /EJ{/{C SN (5.7.5)

where z. = (f/f")'/? isthe “curvature scale’ of the function f, or “characteristic
scale” over which it changes. In the absence of any other information, one often
assumes . = x (except near x = 0 where some other estimate of the typical «
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er +e0)/1f'] ~ Ve (fF" [F)V? ~ o7 (5.7.6)

Here the last order-of-magnitude equality assumes that f, f’, and f al share
the same characteristic length scale, usually the case. One sees that the simple
finite-difference equation (5.7.1) gives at best only the square root of the machine
accuracy €, .

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

)~ L8 h);hf(“’ —h) (5.7.7)

In this case, by equation (5.7.2), the truncation error ise; ~ h%f"’. The roundoff
error e,. is about the same as before. The optimal choice of h, by a short calculation
analogous to the one above, is now

1"

e\ 1/3
h~ <€ff> ~ (e) 3, (5.7.8)
and the fractiona error is

(er +e)/If/| ~ ()2 F213 (3§ (eg) (579)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We have arrived at L esson
2: Choose I to be the correct power of € ¢ or ¢, times a characteristic scale ..

You can easily derive the correct powers for other cases [1]. For a function of
two dimensions, for example, and the mixed derivative formula

82f [f(x—l—h,y—l—h)—f(:c—l—h,y—h)]—[f(m—h,y—l—h)—f(z—h,y—h)}

oxdy 4h?
(5.7.10)

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

188 Chapter 5. Evaluation of Functions

the correct scaling is b ~ e}/‘lxc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy
em, OF even the lower accuracy to which f is evaluated, € ;. Are there no better
methods?

Yes, thereare. All, however, involve exploration of the function’sbehavior over
scales comparableto z ., plus some assumption of smoothness, or analyticity, so that
the high-order termsin a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the function f, so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’sdeferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see §4.3). For derivatives, one seeks to extrapolate, to h — 0, the result
of finite-difference calculations with smaller and smaller finite values of h. By the
use of Neville's algorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scales h. Ridders [2] has given a nice implementation
of thisidea; the following program, dfridr, is based on his agorithm, modified by
an improved termination criterion. Input to the routineis afunction f (called func),
a position x, and a largest stepsize h (more analogous to what we have called z .
above than to what we have called /). Output is the returned value of the derivative,
and an estimate of its error, err.

#include <math.h>

#include "nrutil.h"

#define CON 1.4 Stepsize is decreased by CON at each iteration.
#define CON2 (CON*CON)

#define BIG 1.0e30

#define NTAB 10 Sets maximum size of tableau.
#define SAFE 2.0 Return when error is SAFE worse than the best so
far.

float dfridr(float (*func) (float), float x, float h, float *err)
Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but
rather should be an increment in x over which func changes substantially. An estimate of the
error in the derivative is returned as err.
{

int i,j;

float errt,fac,hh,**a,ans;

if (h == 0.0) nrerror("h must be nonzero in dfridr.");
a=matrix(1,NTAB,1,NTAB);

hh=h;

a[1] [1]=((*func) (x+hh) - (*func) (x-hh))/(2.0%hh) ;

*err=BIG;

for (i=2;i<=NTAB;i++) {

Successive columns in the Neville tableau will go to smaller stepsizes and higher orders of
extrapolation.

hh /= CON;

a[1] [i]=((*func) (x+hh) - (*func) (x-hh))/(2.0%hh) ; Try new, smaller step-

fac=CON2; size.

for (j=2;j<=i;j++) { Compute extrapolations of various orders, requiring
aljl[il=(alj-1]1[il*fac-al[j-1][i-1])/(fac-1.0); no new function eval-
fac=CON2#*fac; uations.

errt=FMAX(fabs(al[jl[i]l-al[j-11[il),fabs(aljl[il-alj-11[i-11));

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

5.7 Numerical Derivatives 189

The error strategy is to compare each new extrapolation to one order lower, both
at the present stepsize and the previous one.

if (errt <= *xerr) { If error is decreased, save the improved answer.
*err=errt;
ans=alj][i];

}

}
if (fabs(al[il[il-al[i-1][i-1]) >= SAFEx(*err)) break;
If higher order is worse by a significant factor SAFE, then quit early.

}
free_matrix(a,1,NTAB,1,NTAB);
return ans;

Indfridr, the number of evaluationsof func istypically 6to 12, butisallowed
to be as great as 2xNTAB. As a function of input b, it is typical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensical
extrapolation produces early return with alarge error. You should therefore choose
afairly large value for h, but monitor the returned value err, decreasing h if it is
not small. For functions whose characteristic x scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders' method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evaluate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximationto the functionin that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in §§5.8-5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervals, and perhaps also noisy. One might then want, at each
point, to least-squares fit a polynomial of some degree M, using an additiona
number ny, of points to the left and some number n r of points to the right of each
desired 2 value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in §14.8. There we will give a
routinefor getting filter coefficientsthat not only construct the fitting polynomial but,
in the accumulation of a single sum of data points times filter coefficients, evaluate
it as well. In fact, the routine given, savgol, has an argument 14 that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the
appropriate setting is 1d=1, and the value of the derivative is the accumulated sum
divided by the sampling interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §5§5.4-5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75-76. [2]

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

190 Chapter 5. Evaluation of Functions

5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted T',,(z), and is given by
the explicit formula

T, (z) = cos(n arccos x) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for T,,(x) (see Figure 5.8.1),

2
=4z’ — 3z (5.8.2)
8

Tni1(x) = 22T, () — Tho1(z) n>1.

(There also exist inverse formulas for the powers of = in terms of the T',,'s — see
equations 5.11.2-5.11.3))

The Chebyshev polynomialsare orthogonal in theinterval [—1, 1] over aweight
(1 —22)~'/2, In particular,

'Lene, [0 17
/_1 Vg dx = {w/2 i=j#0 (5.8.3)

™ i=j=0

The polynomial T',(z) has n zerosin theinterval [—1, 1], and they are located
at the points

k-1
T = oS (M) k=1,2,....n (5.8.4)
In this same interval there are n + 1 extrema (maximaand minima), located at
T = cos (W—k) k=0,1,...,n (5.8.5)
n

At al of the maxima T,,(x) = 1, while a al of the minima T,,(z) = —1;
it is precisely this property that makes the Chebyshev polynomials so useful in
polynomial approximation of functions.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

