176 Chapter 5.  Evaluation of Functions

Rational Functions

You evaluate a rational function like

P,(z) _Potpr -4 puat
Qu(z)  q+qaz+---+qav

R(z) = (5.34)

in the obvious way, namely as two separate polynomials followed by a divide. As
amatter of convention one usually chooses ¢, = 1, obtained by dividing numerator
and denominator by any other ¢o. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard function available for
doing the evaluation:

double ratval(double x, double cof[], int mm, int kk)
Given mm, kk, and cof [0..mm+kk], evaluate and return the rational function (cof [0] +

cof [11x + - - - + cof [mm]x™)/(1 + cof [mm+1]x + - - - + cof [mm+kk] xkk).
{

int j;
double sumd,sumn; Note precision! Change to float if desired.

for (sumn=cof [mm],j=mm-1;j>=0;j--) sumn=sumn*x+cof[j];
for (sumd=0.0,j=mm+kk;j>=mm+1;j--) sumd=(sumd+cof[j])*x;
return sumn/(1.0+sumd);
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5.4 Complex Arithmetic

As we mentioned in §1.2, the lack of built-in complex arithmetic in C is a
nuisance for numerical work. Even in languages like FORTRAN that have complex
data types, it is disconcertingly common to encounter complex operations that
produce overflows or underflows when both the complex operands and the complex
result are perfectly representable. Thisoccurs, wethink, because software companies
assign inexperienced programmers to what they believe to be the perfectly trivia
task of implementing complex arithmetic.
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5.4 Complex Arithmetic 177

Actually, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be donein the obviousway,
with 4 multiplications, one addition, and one subtraction,

(a +1b)(c +id) = (ac — bd) + i(bc + ad) (5.4.2)

(the addition before the i doesn’t count; it just separatesthe real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a+ib)(c+id) = (ac — bd) + i[(a + b)(c + d) — ac — bd] (5.4.2)

which has only three multiplications (ac, bd, (a + b)(c + d)), plustwo additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
are misguided enough to compute it as

la +ib] = Va2 + b? (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 10'° as compared to 1038). Theright
way to do the calculation is

[ laVIT R ol = b
”“W{ww+WW|ww| (5449

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

[a+b(d/c)] + i[b — a(d/c)]

atib _ c+ d(q/c) =1 (5.4.5)
ctid | e/ +i+ible/d=a |\,
c(e/d)+d

Of course you should calculate repeated subexpressions, like ¢/d or d/c, only once.
Complex sguare root is even more complicated, since we must both guard
intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of ¢ + id, first compute
O C = d = O

m\/”— VLW
VMWWH@+WW|

(5.4.6)

w =

¢l < dl
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178 Chapter 5.  Evaluation of Functions

Then the answer is

0 w=20
d
w—l—i(—) w#0,c>0
2w
id = 547
et W w£0,e<0,d>0 (54.7)
2w
d
u—iw w#0,¢<0,d<0

2w

Routines implementing these algorithms are listed in Appendix C.

CITED REFERENCES AND FURTHER READING:
Midy, P, and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33—49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n+ 1)Pyy1(x) = 2n+ 1)aP,(x) — nP,_1(x) (5.5.1)
JnJrl(iZ?) = %Jn(x) — Jnfl(.fc) (552)
nE,11(z) =e ¥ —zE,(x) (5.5.3

cosnf = 2 cosf cos(n — 1) — cos(n — 2)0 (5.5.9
sinnf = 2 cos@sin(n — 1)0 — sin(n — 2)0 (5.5.5)

wherethefirst three functions are Legendre polynomials, Bessel functions of thefirst
kind, and exponential integrals, respectively. (For notation see [1].) These relations
are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations(5.5.4) and (5.5.5) motivate usto say afew words about trigonometric
functions. If your program’s running time is dominated by eval uating trigonometric
functions, you are probably doing somethingwrong. Trig functionswhose arguments
form alinear sequence § = 0y + nd, n = 0,1,2,..., are efficiently calculated by
the following recurrence,

cos(f + &) = cos @ — [awcos O + [sin 0]

55.6
sin(f + &) = sinf — [asinf — B cos ] ( )
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