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Rational Functions

You evaluate a rational function like

R(x) =
Pµ(x)
Qν(x)

=
p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(5.3.4)

in the obvious way, namely as two separate polynomials followed by a divide. As
a matter of convention one usually chooses q0 = 1, obtained by dividing numerator
and denominator by any other q0. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard function available for
doing the evaluation:

double ratval(double x, double cof[], int mm, int kk)
Given mm, kk, and cof[0..mm+kk], evaluate and return the rational function (cof[0] +

cof[1]x + · · · + cof[mm]xmm)/(1 + cof[mm+1]x + · · · + cof[mm+kk]xkk).
{

int j;
double sumd,sumn; Note precision! Change to float if desired.

for (sumn=cof[mm],j=mm-1;j>=0;j--) sumn=sumn*x+cof[j];
for (sumd=0.0,j=mm+kk;j>=mm+1;j--) sumd=(sumd+cof[j])*x;
return sumn/(1.0+sumd);

}
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5.4 Complex Arithmetic

As we mentioned in §1.2, the lack of built-in complex arithmetic in C is a
nuisance for numerical work. Even in languages like FORTRAN that have complex
data types, it is disconcertingly common to encounter complex operations that
produce overflows or underflows when both the complex operands and the complex
result are perfectly representable. This occurs, we think, because software companies
assign inexperienced programmers to what they believe to be the perfectly trivial
task of implementing complex arithmetic.
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Actually, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a + ib)(c + id) = (ac − bd) + i(bc + ad) (5.4.1)

(the addition before the i doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a + ib)(c + id) = (ac − bd) + i[(a + b)(c + d) − ac − bd] (5.4.2)

which has only three multiplications (ac, bd, (a + b)(c + d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
are misguided enough to compute it as

|a + ib| =
√

a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 10 19 as compared to 1038). The right
way to do the calculation is

|a + ib| =
{ |a|√1 + (b/a)2 |a| ≥ |b|
|b|√1 + (a/b)2 |a| < |b| (5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a + ib

c + id
=




[a + b(d/c)] + i[b − a(d/c)]
c + d(d/c)

|c| ≥ |d|
[a(c/d) + b] + i[b(c/d) − a]

c(c/d) + d
|c| < |d|

(5.4.5)

Of course you should calculate repeated subexpressions, like c/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of c + id, first compute

w ≡




0 c = d = 0
√
|c|

√
1 +

√
1 + (d/c)2

2
|c| ≥ |d|

√
|d|

√
|c/d| + √

1 + (c/d)2

2
|c| < |d|

(5.4.6)
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Then the answer is

√
c + id =




0 w = 0

w + i

(
d

2w

)
w �= 0, c ≥ 0

|d|
2w

+ iw w �= 0, c < 0, d ≥ 0

|d|
2w

− iw w �= 0, c < 0, d < 0

(5.4.7)

Routines implementing these algorithms are listed in Appendix C.
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5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (5.5.1)

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n − 1)θ − cos(n − 2)θ (5.5.4)

sin nθ = 2 cos θ sin(n − 1)θ − sin(n − 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations
are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations (5.5.4) and (5.5.5) motivate us to say a few words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functions whose arguments
form a linear sequence θ = θ0 + nδ, n = 0, 1, 2, . . . , are efficiently calculated by
the following recurrence,

cos(θ + δ) = cos θ − [α cos θ + β sin θ]

sin(θ + δ) = sin θ − [α sin θ − β cos θ]
(5.5.6)


