5.3 Polynomials and Rational Functions 173

Thompson, 1.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490-509.
(5]
Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668-671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degree N is represented numerically as a stored array of
coefficients, c[j] with j=0,..., N. We will always take c[0] to be the constant
term in the polynomial, c [V] the coefficient of =z V; but of course other conventions
arepossible. Therearetwo kinds of manipulationsthat you can do with apolynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform
the coefficient array in some way without choosing any particular argument. Let's
start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c [0]+c [1] *x+c [2] *x*x+c [3] *x*x*x+c [4] *x*xhx*X ;

or (even worse!),

p=c[0]+c[1]*x+c[2] *pow(x,2.0)+c [3] *pow(x,3.0) +c[4] *pow(x,4.0);

Come the (computer) revolution, al persons found guilty of such criminal
behavior will be summarily executed, and their programs won't be! It is a matter
of taste, however, whether to write

p=c[0]+x*(c[1]+x*(c[2]+x*(c[3]+x*c[4]1)));

or
p=(((c[4]*x+c[3]) *x+c[2]) *x+c[1]) *x+c [0] ;

If the number of coefficients c[0. .n] is large, one writes
p=c[nl;
for(j=n-1;j>=0;j--) p=p*x+c[j];

or

p=clj=nl;
while (j>0) p=p*x+c[--j];

Another useful trick is for evaluating a polynomial P(z) and its derivative
dP(x)/dx simultaneously:

p=c[n];
dp=0.0;
for(j=n-1;j>=0;j--) {dp=dp*x+p; p=p*x+c[jl;}

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

174 Chapter 5. Evaluation of Functions

or
p=clj=nl;

dp=0.0;
while (j>0) {dp=dp*x+p; p=p*x+c[--j];2}

which yields the polynomial as p and its derivative as dp.
The above trick, which is basically synthetic division [1.2], generalizes to the
evaluation of the polynomial and nd of its derivatives simultaneously:

void ddpoly(float c[], int nc, float x, float pd[], int nd)
Given the nc+1 coefficients of a polynomial of degree nc as an array c[0..nc] with c[0]
being the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd[0] and nd derivatives as pd[1. .nd].
{

int nnd,j,i;

float cnst=1.0;

pd[0]=c[nc];
for (j=1;j<=nd;j++) pd[j1=0.0;
for (i=nc-1;i>=0;i--) {
nnd=(nd < (nc-i) ? nd : nc-i);
for (j=nnd;j>=1;j--)
pd[jl=pd[j]l*x+pd[j-11;
pd[0]=pd [0]*x+c[i];

for (i=2;i<=nd;i++) { After the first derivative, factorial constants come in.
cnst *x= i;
pd[i] *= cnst;

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial
P(z) = ao + a17 + agx? + aza® + aqx? (5.3.1)
where a4 > 0, can be evaluated with 3 multiplications and 5 additions as follows:

P(z) =[(Ax + B)?> + Az + C][(Az + B)> + D| + E (5.3.2)

where A, B,C, D, and FE are to be precomputed by

A = (a4)1/4
az — A3
p=8B_"2
443
D =3By gp®y 1A 2028 ;22‘”3 (533)
c=% _9B_6B>-D

A2
E=ay—B*~B*C+D)-CD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

5.3 Polynomials and Rational Functions 175

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomials can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.

Turn now to algebraic manipulations. You multiply a polynomial of degree
n — 1 (array of range [0..n-1]) by a monomial factor — a by a bit of code
like the following,

clnl=c[n-1];
for (j=n-1;j>=1;j--) cljl=clj-11-c[jl*a;
clo] *= (-a);

Likewise, you divide a polynomial of degree n by a monomial factor x — a
(synthetic division again) using

rem=c[n];

c[n]=0.0;

for(i=n-1;i>=0;i--) {
swap=c[il];
c[il=rem;
rem=swap+rem*a;

which leaves you with a new polynomial array and a numerical remainder rem.

Multiplication of two general polynomials involves straightforward summing
of the products, each involving one coefficient from each polynomial. Division of
two general polynomials, while it can be done awkwardly in the fashion taught using
pencil and paper, is susceptibleto agood deal of streamlining. Witnessthe following
routine based on the algorithm in [3].

void poldiv(float u[l, int n, float v[], int nv, float q[l, float r[l)

Given the n+1 coefficients of a polynomial of degree n in u[0..n], and the nv+1 coefficients
of another polynomial of degree nv in v[0..nv], divide the polynomial u by the polynomial
v (“u"/“v") giving a quotient polynomial whose coefficients are returned in q[0..n], and a
remainder polynomial whose coefficients are returned in r[0..n]. The elements r[nv. .n]
and q[n-nv+1..n] are returned as zero.

{
int k,j;

for (j=0;j<=n;j++) {
r[jl=uljl;
ql[j1=0.0;
}
for (k=n-nv;k>=0;k--) {
q[k]=r[nv+k] /v[nv];
for (j=nv+k-1;j>=k;j--) r[jl -= qlkl*v[j-kI;

for (j=nv;j<=n;j++) r[j]1=0.0;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

176 Chapter 5. Evaluation of Functions

Rational Functions

You evaluate a rational function like

P,(z) _Potpr -4 puat
Qu(z) q+qaz+---+qav

R(z) = (5.34)

in the obvious way, namely as two separate polynomials followed by a divide. As
amatter of convention one usually chooses ¢, = 1, obtained by dividing numerator
and denominator by any other ¢o. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard function available for
doing the evaluation:

double ratval(double x, double cof[], int mm, int kk)
Given mm, kk, and cof [0..mm+kk], evaluate and return the rational function (cof [0] +

cof [11x + - - - + cof [mm]x™)/(1 + cof [mm+1]x + - - - + cof [mm+kk] xkk).
{

int j;
double sumd,sumn; Note precision! Change to float if desired.

for (sumn=cof [mm],j=mm-1;j>=0;j--) sumn=sumn*x+cof[j];
for (sumd=0.0,j=mm+kk;j>=mm+1;j--) sumd=(sumd+cof[j])*x;
return sumn/(1.0+sumd);

CITED REFERENCES AND FURTHER READING:

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 183, 190. [1]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361-363. [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6. [3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, Communications on Pure and Applied Mathematics, vol. 23, pp. 165-179. [4]
Kronsjo, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley). [5]

5.4 Complex Arithmetic

As we mentioned in §1.2, the lack of built-in complex arithmetic in C is a
nuisance for numerical work. Even in languages like FORTRAN that have complex
data types, it is disconcertingly common to encounter complex operations that
produce overflows or underflows when both the complex operands and the complex
result are perfectly representable. Thisoccurs, wethink, because software companies
assign inexperienced programmers to what they believe to be the perfectly trivia
task of implementing complex arithmetic.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

