130 Chapter 4. Integration of Functions

of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which is discusse@4r8, is a general formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis” quadrature) §6.9. Although not explicitly
discussed here, you ought to be able to figure out how mmbdie spline quadrature
using the output of the routingpline in §3.3. (Hint: Integrate equation 3.3.3
over x analytically. Sedl].)

Some integrals related to Fourier transforms can be calculated using the fas
Fourier transform (FFT) algorithm. This is discussed113.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.
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4.1 Classical Formulas for Equally Spaced
Abscissas

‘(eauBWyY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewa puas Jo ‘(Ajuo eauawy YUON) €2/
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, timedo change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
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4.1 Classical Formulas for Equally Spaced Abscissas 131

T~

Xo X1 Xo XN XN +1

open formulas use these points

closed formulas use these points

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between zo and xn41. Closed formulas evaluate the function on the boundary points, while open
formulas refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” egquation 4.1.19, see §4.2), the classical formulas are amost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted z g, z1,...,zyN,
xn+1 Which are spaced apart by a constant step 4,

T; = x9 + th i=0,1,..., N+1 (411)
A function f(x) has known values at the x;’s,
flxi) = fi (4.1.2)

We want to integrate the function f(x) between alower limit « and an upper limit
b, where o and b are each equal to one or the other of the x;'s. An integration
formulathat uses the value of the function at the endpoints, f(a) or f(b), is called
aclosed formula. Occasionally, we want to integrate a function whose value at one
or both endpoints is difficult to compute (e.g., the computation of f goesto a limit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only z ;’s strictly
between a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule:
/ - f(x)de = h[%fl + %fz] +O(R*f") (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times k3 timesthe value
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132 Chapter 4. Integration of Functions

of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.
Equation (4.1.3) isatwo-point formula (z ; and x3). It is exact for polynomials
up to and including degree 1, i.e, f(z) = z. One anticipates that there is a
three-point formulaexact up to polynomialsof degree 2. Thisistrue; moreover, by a
cancellation of coefficients dueto left-right symmetry of the formula, the three-point
formulais exact for polynomials up to and including degree 3, i.e., f(z) = z3:

Smpson’s rule:
s ]t 4 1 5 ¢(4)
/ f(z)dz =h gfl + gfz + §f3 + O(h° f'Y) (4.1.4)

Here f(*) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, so the coefficients add up to 2.

Thereis no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

y ‘e 3 .
Smpson’s ¢ rule:

/: f(x)dx =h |:gfl + gfz + gf?, + gﬁ;] +O(h° f@) (4.1.5)

The five-point formula again benefits from a cancellation:

Bode's rule:
s - 14 64 24 64 14 7 £(6)
/Il f(fl?)da?—h[45f1+45f2+45f3+45f4+45f5] +O(h7f©) (4.1.6)

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we
will not go any further. Consult [1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval
We are going to depart from historical practice for a moment. Many texts

would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

o _ |25 5 5 55 5 £(4)
/IO f(w)dx—h[24f1+24f2+24f3+24f4 + O ')
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4.1 Classical Formulas for Equally Spaced Abscissas 133

Notice that the integral from a = x¢ to b = x5 is estimated, using only the interior
points 1, x2, 3, x4. IN our opinion, formulas of this type are not useful for the
reasonsthat (i) they cannot usefully be strung together to get “ extended” rules, aswe
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introducein §4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval from z to z;, using values of the
function f at x1,xo,.... These will be useful building blocks for the “extended”
open formulas.

/ 1 f(x)dz = h[f]  +O(h*f") (4.1.7)
o _3 1 3 el

f@)dz = h|Sfr— §f2} +O(h° f") (4.1.8)

: f(x)dz = h _%fl - %fz + %fg} +O(h* @) (4.1.9)

101 f(@)dx =h _%fl - %fz + gfg - %h] + O(h® f¥)(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p,q,,s. Without loss of generality takexzo = 0 and z; = 1, s0 h = 1. Substitutein
turn for f(x) (and for f1, fa, f3, f1) thefunctions f(x) = 1, f(z) = z, f(x) = 22,
and f(x) = 23. Doing the integral in each case reduces the left-hand side to a
number, and the right-hand side to a linear equation for the unknowns p, ¢, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3) N — 1 times, to do the integration in the intervals
(z1,22), (x2,23), ..., (xN-1,2N),andthenadd theresults, weobtainan “ extended”
or “composite” formula for the integral from x; to zy.

Extended trapezoidal rule:

/””N flx)dz = h[%fl + fa+ f3+
- o a)3f”) (4.1.10)

"'+fN—1+%fN:| +O( NE

Here we have written the error estimate in terms of theinterval b — a and the number
of points NV instead of in terms of h. Thisis clearer, since one is usually holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased
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134 Chapter 4.  Integration of Functions

by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will show only the scaling of the error term with the number of steps.
For reasons that will not become clear until §4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.
The extended formula of order 1/N?3 is:

N ) 13
f(x)dz =h Efl + Efz + fa+ fat+
i 13 . ) (4.1.12)
ot fn—2t EfN—l + ﬁfN:| +0 (m)
(We will see in a moment where this comes from.)

If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,
we get the extended Smpson’s rule:

[ s =nlghe 3t Sk g
@ (4.1.13)

2 4 1 1
i ng—2 + ng—l + ng} +0 (m>

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling aternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Ancther
extended formula with the same order as Simpson’s rule is

L?ﬂ@m:hgh+gh+§ﬁ+h+ﬁ+

23 7 3
...+fN—4+fN—3+ﬂfN_2+EfN—l-f-ng (4.1.14)

e (NL)
This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to §18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which the first and last step are done with the trapezoidal rule (4.1.3). The
trapezoidal step istwo orderslower than Simpson’s rule; however, its contribution to

the integral goes down as an additional power of N (sinceit is used only twice, not
N times). This makes the resulting formula of degree one less than Simpson.
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4.1 Classical Formulas for Equally Spaced Abscissas 135

Extended Formulas (Open and Semi-open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11)—(4.1.14), evaluated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)—(4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formulas for an interval open at
both ends are as follows:

Equations (4.1.7) and (4.1.11) give

N 3 3 1
/ f(z)dz = h[§f2+f3+f4+' : '+fN2+§fN1] +0 <m) (4.1.15)
Equations (4.1.8) and (4.1.12) give
N 23 7
/:E1 f(x)de = h{ﬁfz + Ef3 + fa+ f5+
7 23
ot N3+ Efzv—z + EfN—1:| (4.1.16)
1
e (N_)
Equations (4.1.9) and (4.1.13) give
N 27 13 4
/g61 fl@)dx = h|:ﬁf2 + 0+ Ef4 + §f5+
4 13 27
S ng74_|_ ﬁfN’3+O+ Ef]\,,1 (4.1.17)
1
+0 <N_)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

TN 55 1 11
/gc1 flx)dx = h[ﬂfQ - gf3 + §f4 + f5 + fo + fr+
11 1 55
s 4 fnos + fnoa ng% - ngfz + ﬂfol
1
+0 <m)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. Thisoneis
known as the extended midpoint rule, and is accurate to the same order as (4.1.15):

(4.1.18)

/ i f(z)dz = h{fs) + f5/2 + fr/2+

. (4.1.19)

ot fnosp t v +O (m)
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136 Chapter 4.  Integration of Functions

o o . . Py . S . o (tota after N=4)

Figure 4.2.1. Sequential callsto the routine trapzd incorporate the information from previous calls and
evauate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulasarejust the obvious combinations of equations(4.1.11)—
(4.1.14) with (4.1.15)—(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formulawith error term
decreasing as 1/N3 which is closed on the right and open on the left:

[ e =n| Bt Gk fik g
= (4.1.20)

13 ) 1
ot fn—2t EfN—l + ﬁfN:| +0 (m)
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4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. Thereare
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

Theobviousfact isthat, for afixed function f(x) to beintegrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpoints ¢ and b. The first
stage of refinement is to add to this average the value of the function at the halfway
point. The second stage of refinement is to add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write a routine with this kind of logic to it:
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