3.6 Interpolation in Two or More Dimensions 123

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimatey@f, z2, ..., z,)
from an n-dimensional grid of tabulated valugs and n one-dimensional vec-
tors giving the tabulated values of each of the independent variahles;, .. .,
zn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” pointsdimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimension
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
yall..m][1..n]. We arealsogivenanarrayall..m], andanarrax2all. .n].

The relation of these input quantities to an underlying function; , z2) is

/2 dny

yaljl k] = y(xlaljl, x2alk]) (3.6.0)

We want to estimate, by interpolation, the functiprat some untabulated point
(1‘1, 1‘2).
An important concept is that of thgrid square in which the point(z 1, 22)
falls, that is, the four tabulated points that surround the desired interior point. Forg
o

convenience, we will number these points from 1 to 4, counterclockwise startlngi
from the lower left (see Figure 3.6.1). More precisely, if
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xlal[j]l <z <xlal[j+1]

(3.6.2
x2alk] < z9 < x2al[k+1]
definesj and k, then
y1 = yaljl [k]
y2 = yalj+1] [k]
(3.6.3

ys = yalj+1] [k+1]
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ya = yaljl [k+1]

The simplest interpolation in two dimensionshidginear interpolation on the
grid square. Its formulas are:

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

t = (r1 —x1aljl)/(x1alj+1] — x1alj])
u = (xo — x2alk])/(x2alk+1] — x2a[k])

‘(eauBWYy YUON apisino) Bio abpugued@AIasisnoloalip 0} |lewsa puss o ¢

(3.6.4

(so thatt andu each lie between 0 and 1), and
y(x1,x2) = (1 —t)(1 —w)yr + (1 — w)y2 + tuys + (1 — t)uy,y (3.6.5

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated
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Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines bcuint and
becucof. (b) For each of the four pointsin (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

function value changes continuously. However, the gradient of the interpolated
function changes discontinuously at the boundaries of each grid square.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods. One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher
derivatives. Or, one can make use of higher order to enforce smoothness of some of
these derivatives as the interpolating point crosses grid-square boundaries. We will
now consider each of these two directions in turn.

Higher Order for Accuracy

The basic ideaisto break up the problem into a succession of one-dimensional
interpolations. If we want to dom-1 order interpolation in the - ; direction, and n-1
order in the z direction, wefirst locate anm x n sub-block of the tabul ated function
matrix that contains our desired point (z1,x2). We then do m one-dimensional
interpolationsin the x5 direction, i.e., on the rows of the sub-block, to get function
values at the points (x1a[jl,z2), j = 1,...,m. Finally, we do alast interpolation
in the z; direction to get the answer. If we use the polynomial interpolation routine
polint of §3.1, and a sub-block which is presumed to be aready located (and
addressed through the pointer float **ya, see §1.2), the procedurelooks like this:

#include "nrutil.h"

void polin2(float xlal[], float x2al[], float #**ya, int m, int n, float x1,

float x2, float *y, float *dy)
Given arrays x1a[1..m] and x2a[1..n] of independent variables, and a submatrix of function
values ya[1l..m] [1..n], tabulated at the grid points defined by x1a and x2a; and given values
x1 and x2 of the independent variables; this routine returns an interpolated function value y,
and an accuracy indication dy (based only on the interpolation in the x1 direction, however).
{

void polint(float xal[], float yal[l, int n, float x, float *y, float *dy);
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int j;
float *ymtmp;

ymtmp=vector(1,m);

for (j=1;j<=m;j++) { Loop over rows.
polint(x2a,yaljl,n,x2,&ymtmp[j],dy); Interpolate answer into temporary stor-

} age.

polint(xla,ymtmp,m,x1,y,dy); Do the final interpolation.

free_vector (ymtmp,1,m) ;

Higher Order for Smoothness: Bicubic Interpolation

We will give two methods that are in common use, and which are themselves
not unrelated. The first is usually called bicubic interpolation.

Bicubic interpolation requires the user to specify at each grid point not just
the function y(x1,x2), but aso the gradients dy/0x1 = y.1, 0y/0x2 = y 2 and
the cross derivative 9%y /dx10z2 = y12. Then an interpolating function that is
cubic in the scaled coordinates ¢ and « (equation 3.6.4) can be found, with the
following properties: (i) The values of the function and the specified derivatives
are reproduced exactly on the grid points, and (ii) the values of the function and
the specified derivatives change continuously as the interpolating point crosses from
one grid square to another.

Itisimportant to understand that nothing in the equations of bicubicinterpolation
requiresyou to specify the extraderivativescorrectly! The smoothnesspropertiesare
tautologically “forced,” and have nothing to do with the “accuracy” of the specified
derivatives. It is a separate problem for you to decide how to obtain the values that
are specified. The better you do, the more accurate the interpolation will be. But
it will be smooth no matter what you do.

Best of all isto know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):

ylaljl [k]l=(yalj+1] [k]l-yal[j-1]1[k])/(x1al[j+1]-x1alj-11);

y2aljl [kl=(yaljl [k+1]1-yal[jl [k-11)/(x2al[k+1]-x2a[k-1]);

y12a[j] [k]1=(yalj+1] [k+1]-yal[j+1] [k-1]-yal[j-1] [k+1]+yal[j-1] [k-1]1)
/((x1alj+1]-x1alj-1]1) *(x2a[k+1]-x2a[k-11));

To do a bicubic interpolation within a grid square, given the function y and the
derivativesy1, y2, y12 at each of the four corners of the square, there are two steps:
First obtain the sixteen quantities ¢;;, i, = 1,...,4 using the routine bcucof
below. (The formulas that obtain the ¢'s from the function and derivative values
are just a complicated linear transformation, with coefficients which, having been
determined once in the mists of numerical history, can be tabulated and forgotten.)
Next, substitute the ¢’sinto any or al of the following bicubic formulas for function
and derivatives, as desired:
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y 1'1,.%'2 chz]tl

z—l_] 1

ya(z1, z2) ZZ i — 1)t 2ul =1 (dt/dwy)

z—l_] 1

y2(z1, z2) ZZ j—1e tZ L= 2(du/d:cz)

1_1] 1

y12(z1,22) ZZ i —1)(j — D)egt" 2w/ 2 (dt /dxy) (du/dzs)

=1 j=1

where ¢ and u are again given by equation (3.6.4).

void bcucof(float y[], float yi[l, float y2I[1,

float **c)

float yi12[],

(3.6.6)

, float d2,

Given arrays y[1..4], y1[1..4], y2[1..4], and y12[1..4], containing the function, gra-
dients, and cross derivative at the four grid points of a rectangular grid cell (numbered coun-
terclockwise from the lower left), and given d1 and d2, the length of the grid cell in the 1- and
2-directions, this routine returns the table c[1..4][1..4] that is used by routine bcuint

for bicubic interpolation.

{
static int wt[16][16]=
{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
-3,0,0,3,0,0,0,0,-2,0,0,-1,0,0,0,0,
-2,0,0,0,0,1,0,0,1,0,0,0,0

sV Vs

,0,0,0,-3,0,0,3,0,0,0,0,-2,0,0,-1,

,0,0,0,2,0,0,-2,0,0,0,0,1,0,0,1,
-3,3,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-3,3,0,0,-2,-1,0,0,
9,-9,9,-9,6,3,-3,-6,6,-6,-3,3,4,2,1
-6,6,-6,6,-4,-2,2,4,-3,3,3,-3,-2,-1
2,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,2,-2,0,0,1,1,0,0,
-6,6,-6,6,-3,-3,3,3,-4,4,2,-2,-2,-2
4,-4,4,-4,2,2,-2,-2,2,-2,-2,2,1,1,1

int 1,k,j,1;
float xx,d1d2,cl[16],x[16];

d1d2=d1*d2;

for (i=1;i<=4;i++) {
x[i-1]=y[i];
x[1+3]=y1[i]*d1;
x[i+7]1=y2[i]*d2;
x[i+11]=y12[i]*d1d2;

22,
,—1,-2,
,-1,-1,
,1};

Pack a temporary vector x.

Matrix multiply by the stored table.

}

for (i=0;i<=15;i++) {
xx=0.0;
for (k=0;k<=15;k++) xx += wt[i] [k]*x[k];
cl[i]l=xx;

}

1=0;

for (i=1;i<=4;i++)
for (j=1;j<=4;j++) cl[il[j1=cl[1++];

Unpack the result into the output table.
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Theimplementation of equation (3.6.6), which performsabicubicinterpolation,
gives back the interpolated function value and the two gradient values, and uses the
above routine bcucof, is simply:

#include "nrutil.h"

void bcuint(float y[], float yi[], float y2[], float y12[], float x11,

float xlu, float x21, float x2u, float x1, float x2, float *ansy,

float *ansyl, float *ansy2)
Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described in
bcucof); x11 and x1u, the lower and upper coordinates of the grid square in the 1-direction;
x21 and x2u likewise for the 2-direction; and x1,x2, the coordinates of the desired point for
the interpolation. The interpolated function value is returned as ansy, and the interpolated
gradient values as ansyl and ansy2. This routine calls bcucof.

{

void bcucof (float y[], float y1[], float y2[], float yi12[], float di,
float d2, float **c);

int i;

float t,u,dl,d2,**c;

c=matrix(1,4,1,4);

dl=x1lu-x11;

d2=x2u-x21;

becucof (y,y1,y2,y12,d1,d2,¢c); Get the c's.

if (xlu == x11 || x2u == x21) nrerror("Bad input in routine bcuint");

t=(x1-x11)/d1; Equation (3.6.4).

u=(x2-x21) /d2;

*ansy=(*ansy2)=(*ansy1)=0.0;

for (i=4;i>=1;i--) { Equation (3.6.6).
*ansy=t* (*ansy)+((c[i] [4]*u+c[i] [3])*xu+c[i]l [2])*u+c[i][1];
*ansy2=t* (xansy2)+(3.0%c [i] [4]*u+2.0%c[i] [3])*u+c[i] [2];
*ansyl=ux* (xansy1)+(3.0%c[4] [i]*t+2.0%c[3] [i])*t+c[2] [i];

}

xansyl /= di;

*ansy2 /= d2;

free_matrix(c,1,4,1,4);

}

Higher Order for Smoothness: Bicubic Spline

The other common technique for obtaining smoothness in two-dimensional
interpolation is the bicubic spline. Actually, this is equivalent to a special case
of bicubic interpolation: The interpolating function is of the same functional form
as equation (3.6.6); the values of the derivatives at the grid points are, however,
determined “globally” by one-dimensional splines. However, bicubic splines are
usually implemented in a form that looks rather different from the above bicubic
interpolation routines, instead looking much closer in form to the routine polin2
above: To interpolate one functional value, one performsm one-dimensional splines
across the rows of the table, followed by one additional one-dimensional spline
down the newly created column. It is a matter of taste (and trade-off between time
and memory) as to how much of this process one wants to precompute and store.
Instead of precomputing and storing all the derivative information (as in bicubic
interpolation), spline users typically precompute and store only one auxiliary table,
of second derivativesin one direction only. Then one need only do spline evaluations
(not constructions) for the m row splines; one must still do a construction and an
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evaluation for the final column spline. (Recall that a spline construction is a process
of order N, while a spline evaluation is only of order log N — and that is just to
find the place in the table!)

Here is aroutine to precompute the auxiliary second-derivative table:

void splie2(float xlal[], float x2al[], float #**ya, int m, int n, float **y2a)
Given an m by n tabulated function ya[l..m][1..n], and tabulated independent variables
x2a[1..n], this routine constructs one-dimensional natural cubic splines of the rows of ya
and returns the second-derivatives in the array y2a[1..m] [1..n]. (The array x1a[1..m] is
included in the argument list merely for consistency with routine splin2.)
{

void spline(float x[], float y[], int n, float ypl, float ypn, float y2[l);

int j;
for (j=1;j<=m;j++)
spline(x2a,yaljl,n,1.0e30,1.0e30,y2al[jl); Values 1x 1039 signal a nat-
} ural spline.

(If you want to interpolate on a sub-block of a bigger matrix, see §1.2.)
After the above routine has been executed once, any number of bicubic spline
interpolations can be performed by successive calls of the following routine:

#include "nrutil.h"

void splin2(float xla[], float x2al[], float **ya, float **y2a, int m, int n,
float x1, float x2, float *y)

Given xla, x2a, ya, m, n as described in splie2 and y2a as produced by that routine; and

given a desired interpolating point x1,x2; this routine returns an interpolated function value y

by bicubic spline interpolation.

{
void spline(float x[], float y[], int n, float ypl, float ypn, float y2[1);
void splint(float xal[], float yal[], float y2a[l, int n, float x, float *y);
int j;
float *ytmp,*yytmp;
ytmp=vector(1,m);
yytmp=vector(1l,m); Perform m evaluations of the row splines constructed by
for (j=1;j<=m;j++) splie2, using the one-dimensional spline evaluator

splint(x2a,yaljl,y2aljl,n,x2,&yytmp[jl); splint.

spline(xla,yytmp,m,1.0e30,1.0e30,ytmp) ; Construct the one-dimensional col-
splint(xla,yytmp,ytmp,m,x1,y); umn spline and evaluate it.
free_vector(yytmp,1,m);
free_vector(ytmp,1,m);

}
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