120 Chapter 3. Interpolation and Extrapolation

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not theval ue of theinterpol ating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneousinterpolated val ues of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficientsare what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Thereforeit is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through thetabulated points, for example, whilevalues computed
by the routines in §3.1-53.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
pointsare equal, takesthetabulated values as perfect. If they infact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to be y; = y(z;). If the interpolating
polynomial is written as

y=co—+crx+cox®+ -+ ey (35.1)

then the ¢;’s are required to satisfy the linear equation

2 N
1 zy 2§ --- x; Co Yo
1 =z x2 .. zN c
Lo L= (35.2)
2 N
1 oy 2% - 2N CN YN

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniquesfor linear equationsgeneraly (52.3); however
the specia method that was derived in §2.8 is more efficient by a large factor, of
order N, so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki. Note that the
arrays are all assumed to be zero-offset.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

3.5 Coefficients of the Interpolating Polynomial 121

#include "nrutil.h"

void polcoe(float x[], float y[], int n, float cof[l)
Given arrays x[0..n] and y[0..n] containing a tabulated function ¥; = f(xi), this routine
returns an array of coefficients cof [0..n], such that y, = 3°; cof;xJ.
{
int k,j,i;
float phi,ff,b,*s;

s=vector(0,n);
for (i=0;i<=n;i++) s[il=cof[i]=0.0;

s[n] = -x[0];
for (i=1;i<=n;i++) { Coefficients s; of the master polynomial P(x) are
for (j=n-i;j<=n-1;j++) found by recurrence.
s[j] -= x[il*s[j+11;
s[n] -= x[il;
}
for (j=0;j<=n;j++) {
phi=n+1;
for (k=n;k>=1;k--) The quantity phi = [], ., (z; — zx) is found as a
phi=k*s [k]+x[j]+phi; derivative of P(z;).
ff=y[j]l/phi;
b=1.0; Coefficients of polynomials in each term of the La-
for (k=n;k>=0;k--) { grange formula are found by synthetic division of
cof [k] += bxff; P(z) by (z — x;). The solution cj, is accumu-
b=s[k]+x[jI*Db; lated.
}
}

free_vector(s,0,n);

Another Method

Another technique is to make use of the function value interpolation routine
already given (polint §3.1). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at « = 0, then this value will evidently be cy. Now
we can subtract ¢ from the y;’s and divide each by its corresponding = ;. Throwing
out one point (the one with smallest x; is a good candidate), we can repeat the
procedure to find ¢;, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of order N3, while the preceding one was of order N2. You will
find, however, that neither works very well for large N, because of the intrinsic
ill-condition of the Vandermonde problem. In single precision, N upto 8 or 10 is
satisfactory; about double this in double precision.

#include <math.h>
#include "nrutil.h"

void polcof(float xal[], float yal[l, int n, float cof[])
Given arrays xa[0..n] and ya[0..n] containing a tabulated function ya, = f(xa;), this
routine returns an array of coefficients cof [0..n] such that ya, = Zj cofjxal.
{
void polint(float xal[], float yal[], int n, float x, float *y, float *dy);
int k,j,i;
float xmin,dy,*x,*y;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

122 Chapter 3. Interpolation and Extrapolation

x=vector(0,n);

y=vector(0,n);

for (j=0;j<=m;j++) {
x[j1=xaljl;
y[jl=yaljl;

for (j=0;j<=n;j++) {
polint(x-1,y-1,n+1-3j,0.0,&cof [j],&dy) ;
Subtract 1 from the pointers to x and y because polint uses dimensions [1..n]. We
extrapolate to z = 0.

xmin=1.0e38;
k= -1;
for (i=0;i<=n-j;i++) { Find the remaining x; of smallest
if (fabs(x[i]) < xmin) { absolute value,
xmin=fabs(x[i]);
k=i;
}
if (x[11) yl[il=(y[il-cof[j1)/x[il; (meanwhile reducing all the terms)
}
for (i=k+1;i<=n-j;i++) { and eliminate it.
yli-1]=y[i];
x[i-1]1=x[i];
}

}
free_vector(y,0,n);
free_vector(x,0,n);

If the point z = 0 isnot in (or at least close to) the range of the tabulated x ;'s,
then the coefficients of theinterpolating polynomial will in general becomevery large.
However, the real “information content” of the coefficients is in small differences
from the “trandlation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to put = 0 in asensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinationswith large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine's floating precision were infinitely good. The above routines polcoe and
polcof have dightly different sensitivities to the pathologies that can occur.

Areyou still quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:
Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

3.6 Interpolation in Two or More Dimensions 123

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate of y(xz1,z2,...,2y)
from an n-dimensional grid of tabulated values y and n one-dimensional vec-
tors giving the tabulated values of each of the independent variables x 1, 2o, ...,
. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points in n-dimensional
space rather than at the vertices of arectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
yall..m][1..n]. Wearedsogivenanarray x1al[1..m],andanarray x2al1. .n].
The relation of these input quantities to an underlying function y(x 1, z2) is

yaljl k] = y(xlaljl, x2alk]) (36.1)

We want to estimate, by interpolation, the function y at some untabulated point
(1‘1 5 1‘2).

An important concept is that of the grid square in which the point (1, 22)
fals, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

xlal[j]l <z <xlal[j+1]

(36.2)
x2alk] < z9 < x2al[k+1]
defines j and k, then
y1 = yaljl (k]
y2 = yalj+1] [k]
(36.3)

ys = yalj+1] [k+1]
ya = yaljl [k+1]

The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are:

t = (r1 —x1aljl)/(x1alj+1] — x1alj])

u = (xo — x2alk])/(x2alk+1] — x2a[k]) (3.6.4)

(so that ¢ and u each lie between 0 and 1), and

y(z1,22) = (1 —t)(1 —w)yr + t(1 — w)ys + tuys + (1 — t)uys (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

