3.4 How to Search an Ordered Table 117

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,

such as fourth-order polynomial interpolation, to compute a funcfign from a
set of tabulated:;’s and f;'s. Then you will need a fast way of finding your place
in the table ofz;’s, given some particular value at which the function evaluation

is desired. This problem is not properly one of numerical analysis, but it occurs so

often in practice that it would be negligent of us to ignore it.
Formally, the problemiis this: Given an array of abscissds], j=1, 2,. .. n,

with the elements either monotonically increasing or monotonically decreasing, and

given a numbek, find an integerj such thatx lies betweerkx[j] andxx[j+1].
For this task, let us define fictitious array elemext§0] andxx[n+1] equal to

plus or minus infinity (in whichever order is consistent with the monotonicity of the

table). Thenj will always be between 0 angl inclusive; a value of O indicates
“off-scale” at one end of the table,indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do bettebtkeotion,
which will find the right place in the table in abolsig,n tries. We already did use
bisection in the spline evaluation routiselint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

void locate(float xx[], unsigned long n, float x, unsigned long *j)

Given an array xx[1..n], and given a value x, returns a value j such that x is between xx [j]
and xx[j+1]. xx must be monotonic, either increasing or decreasing. j=0 or j=n is returned
to indicate that x is out of range.

{
unsigned long ju,jm,jl;
int ascnd;
j1=0; Initialize lower
ju=n+1; and upper limits.
ascnd=(xx[n] >= xx[11);
while (ju-jl > 1) { If we are not yet done,
jm=(ju+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)
jl=jm; and replace either the lower limit
else
ju=jm; or the upper limit, as appropriate.
X Repeat until the test condition is satisfied.
if (x == xx[1]) =*j=1; Then set the output
else if(x == xx[n]) *j=n-1;
else *xj=jl;
} and return.

A unit-offset arrayxx is assumed. To uskocate with a zero-offset array,
remember to subtradtfrom the address afx, and also from the returned valge

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,

:dny

-2/8-008-T [[ed 10 WO Ju" MMMW//

‘(eauBWyY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewa puas Jo ‘(Ajuo eauawy YUON) €2/
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

118 Chapter 3. Interpolation and Extrapolation

)

H
w
N
2 —>¢
R

@

w
N

8 l
! hunt phase

,mm/\m
1 7 10 14 22 /38

(b) bisection phase

Figure 3.4.1. (a) The routine locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown here is a
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergence to an element near 7, such as 9, which would require just three “hops”

for right-hand side evaluations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. The
following routine instead starts with a guessed position in the table. It first “hunts,”
either up or down, inincrements of 1, then 2, then 4, etc., until the desired valueis
bracketed. Second, it then bisects in the bracketed interval. At worst, thisroutineis
about a factor of 2 lower than 1ocate above (if the hunt phase expands to include
thewholetable). At best, it can be afactor of log,n faster than 1ocate, if the desired
pointisusually quitecloseto theinput guess. Figure 3.4.1 comparesthetwo routines.

void hunt(float xx[], unsigned long n, float x, unsigned long *jlo)

Given an array xx[1..n], and given a value X, returns a value jlo such that x is between
xx[jlo] and xx[jlo+1]. xx[1..n] must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as the
initial guess for jlo on output.

{
unsigned long jm, jhi,inc;
int ascnd;
ascnd=(xx[n] >= xx[1]); True if ascending order of table, false otherwise.
if (*jlo <= 0 || *jlo > n) { Input guess not useful. Go immediately to bisec-
*j1o=0; tion.
jhi=n+1;
} else {
inc=1; Set the hunting increment.
if (x >= xx[*jlo] == ascnd) { Hunt up:
if (*jlo == n) return;
jhi=(*jlo)+1;
while (x >= xx[jhi] == ascnd) { Not done hunting,
*jlo=jhi;
inc += inc; so double the increment
jhi=(*jlo)+inc;
if (jhi > n) { Done hunting, since off end of table.
jhi=n+1;
break;

} Try again.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

3.4 How to Search an Ordered Table 119

} Done hunting, value bracketed.
} else { Hunt down:
if (*jlo == 1) {
*j1lo=0;
return;
}
jhi=(*jlo)--;
while (x < xx[*jlo] == ascnd) { Not done hunting,
jhi=(*jl0);
inc <<= 1; so double the increment
if (inc >= jhi) { Done hunting, since off end of table.
*jlo=0;
break;
}
else *jlo=jhi-inc;
} and try again.
} Done hunting, value bracketed.
} Hunt is done, so begin the final bisection phase:

while (jhi-(xjlo) != 1) {
jm=(jhi+(*jlo)) >> 1;
if (x >= xx[jm] == ascnd)
*jlo=jm;
else
jhi=jm;
}
if (x == xx[n]) *jlo=n-1;
if (x == xx[1]) *jlo=1;

If your array xx is zero-offset, read the comment following Locate, above.
After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired valuelies betweentable entriesxx [j] and xx [j+1], wherexx[1. .n] isthe
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of length m. How do you make the connection?

The solution: Calculate

k = IMIN(IMAX(j-(m-1)/2,1) ,n+1-m)

(The macros IMIN and IMAX give the minimum and maximum of two integer
arguments; see §1.2 and Appendix B.) This expression produces the index of the
leftmost member of an m-point set of points centered (insofar as possible) between
j and j+1, but bounded by 1 at the left and n at the right. C then lets you call the
interpolation routine with array addresses offset by k, e.g.,

polint (&xx[k-1],&yy[k-1],m,...)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

120 Chapter 3. Interpolation and Extrapolation

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not theval ue of theinterpol ating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneousinterpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficientsare what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Thereforeit is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through thetabulated points, for example, whilevalues computed
by the routines in §3.1-53.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
pointsare equal, takesthetabulated values as perfect. If they infact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to be y; = y(z;). If the interpolating
polynomial is written as

y=co—+crx+cox®+ -+ ey (35.1)

then the ¢;’s are required to satisfy the linear equation

2 N
1 zy 2§ --- x; Co Yo
1 =z x2 .. zN c
Lo L= (35.2)
2 N
1 oy 2% - 2N CN YN

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniquesfor linear equationsgeneraly (52.3); however
the specia method that was derived in §2.8 is more efficient by a large factor, of
order N, so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki. Note that the
arrays are all assumed to be zero-offset.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

