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3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, #met well
approximated by rational functions, that is quotients of polynomials. We de-
note by Riiy1)..i+m) @ rational function passing through the + 1 points
(i, Yi) - - - (Titm, Yitm). More explicitly, suppose

R ) :Pu(l'):p0+p1x+...+puxp
i(i+1)...(i+m) Qv (x) Qo+ qx+-+qa

(3.2.0)

Since there arg + v + 1 unknownp’s andq’s (¢o being arbitrary), we must have
m+l=p+v+1 (3.2.2

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,3
because of their ability to model functions with poles, that is, zeros of the denominators
of equation (3.2.1). These poles might occur for real values, of the function 8
to be interpolated itself has poles. More often, the funcifén) is finite for all
finite real z, but has an analytic continuation with poles in the complgXane.
Such poles can themselves ruin a polynomial approximation, even one restricted t
real values oft, just as they can ruin the convergence of an infinite power series
in z. If you draw a circle in the complex plane around yeuartabulated points,
then you should not expect polynomial interpolation to be good unless the neares
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powersuah its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should als
mention in passing that rational function approximations can be used in analyti
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansio
that agrees with the firsh + 1 terms of the power series expansion of the desired
function f(z). This is calledPadé approximation, and is discussed i§b.12.
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Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation 3
(3.1.2) is constructed column by column, leading to a result and an error estimatei,'
The Bulirsch-Stoer algorithm produces the so-catliegonal rational function, with '
the degrees of numerator and denominator equah (i§ even) or with the degree
of the denominator larger by one (if. is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer td]. The algorithm is summarized by a recurrence
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112 Chapter 3. Interpolation and Extrapolation

relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(iv1y...(ivm) = Bit1)...(i+m)
Riiv1y.. ivm) — Ri. (i+m—1)
( r—x; ) (1_ Rty +m)—Ri (i+m—1) )_1
T—Tifm Ry, (ivm) —Ritr1). (i4m—1)
(323

This recurrence generates the rational functions thremgh1 points from the ones
throughm and (the ternd? ;1. (;+m—1) IN€quation 3.2.3): — 1 points. It is started

with

+

and with

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert th

recurrence (3.2.3) to one involving only the small differences

Cm,i = Rz(z-{-m) - Ri...(i+m—l)
(3.2.6

Diji = Ri (i+m) — R(i+1)...(i+m)
Note that these satisfy the relation
Cm+1,i — Dimt1,i = Crmiv1 — D (3.2.7
which is useful in proving the recurrences
Cini+1(Cmit1 — D)
L) D i — Cinia

T—Ti4m+1

Dpy1 = (

(L) Duni(Conisr — Dot (3.2.8

T—Ti4m+1

Cong1i =

T—Litm+1

This recurrence is implemented in the following function, whose use is analogous
in every way topolint in §3.1. Note again that unit-offset input arrays are

assumed §1.2).

#include <math.h>

#include "nrutil.h"

#define TINY 1.0e-25 A small number.

#define FREERETURN {free_vector(d,1,n);free_vector(c,1,n);return;}

void ratint(float xal[l, float ya[l, int n, float x, float *y, float *dy)
Given arrays xa[1..n] and ya[l..n], and given a value of x, this routine returns a value of
y and an accuracy estimate dy. The value returned is that of the diagonal rational function,
evaluated at x, which passes through the n points (xa;,ya;), ¢ = 1...n.
{

int m,i,ns=1;

float w,t,hh,h,dd,*c,*d;

e
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3.3 Cubic Spline Interpolation 113

c=vector(1,n);
d=vector(1,n);
hh=fabs(x-xal[1]);
for (i=1;i<=n;i++) {

h=fabs (x-xal[i]);
if (h == 0.0) {

*y=yal[i];
*dy=0.0;
FREERETURN
} else if (h < hh) {
ns=ij;
hh=h;
}
clil=yalil;
d[il=ya[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero
} condition.
*xy=ya[ns--];
for (m=1;m<n;m++) {
for (i=1;i<=n-m;i++) {
w=c[i+1]-d[i];
h=xa[i+m]-x; h will never be zero, since this was tested in the initial-
t=(xal[i]-x)*d[i]/h; izing loop.
dd=t-c[i+1];
if (dd == 0.0) nrerror("Error in routine ratint");

This error condition indicates that the interpolating function has a pole at the
requested value of x.
dd=w/dd;
d[il=cl[i+1]*dd;
clil=t*dd;
}
*y += (xdy=(2#ns < (n-m) ? cl[ns+1] : dlns--1));

FREERETURN
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3.3 Cubic Spline Interpolation

Given a tabulated functiog; = y(z;), ¢ = 1...N, focus attention on one
particular interval, between; andx ;. Linear interpolation in that interval gives
the interpolation formula

y = Ay; + By (3.3.)
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