Chapter 3. Interpolation and
Extrapolation

3.0 Introduction

We sometimes know the value of a functipfx) ata setof points 1, x2, ... ,an
(say, withzq < ... < zy), butwe don’'thave an analytic expression fox) that lets
us calculate its value at an arbitrary point. For examplefthe)’s might result from
some physical measurement or from long numerical calculation that cannot be cas
into a simple functional form. Often the;'s are equally spaced, but not necessarily.

The task now is to estimatg(z) for arbitraryx by, in some sense, drawing a
smooth curve through (and perhaps beyond)}thef the desired: is in between the
largest and smallest of the’s, the problem is calledhterpolation; if = is outside
that range, it is calledxtrapolation, which is considerably more hazardous (as many
former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between
beyond the known points, by some plausible functional form. The form shoul
be sufficiently general so as to be able to approximate large classes of function
which might arise in practice. By far most common among the functional forms
used are polynomial$8.1). Rational functions (quotients of polynomials) also turn
out to be extremely usefu$8.2). Trigonometric functions, sines and cosines, give
rise totrigonometric interpolation and related Fourier methods, which we defer to
Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about wha
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we knows
enough about our function to apply a theorem of any power, we are usually not ing
the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct froriunction approximation. That task
consists of finding an approximate (but easily computable) function to use in place
of a more complicated one. In the case of interpolation, you are given the furfction
at pointsnot of your own choosing. For the case of function approximation, you are
allowed to compute the functighatany desired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-
lation scheme. Consider, for example, the function
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106 Chapter 3.  Interpolation and Extrapolation

which is well-behaved everywhere exceptrat 7, very mildly singular atc = T,

and otherwise takes on all positive and negative values. Any interpolation based on
the valuesr = 3.13,3.14, 3.15, 3.16, will assuredly get a very wrong answer for
the valuex = 3.1416, even though a graph plotting those five points looks really
quite smooth! (Try it on your calculator.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should provide an estimate of its own error. Suchj
an error estimate can never be foolproof, of course. We could have a function thatg
for reasons known only to its maker, takes off wildly and unexpectedly between :
two tabulated points. Interpolation always presumes some degree of smoothne
for the function interpolated, but within this framework of presumption, deviations
from smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit an interpolating-
function to the data points provided. (2) Evaluate that interpolating function at §
the target pointzx.

However, this two-stage method is generally not the best way to proceed iny
practice. Typically it is computationally less efficient, and more susceptible to 5
roundoff error, than methods which construct a functional estinféig directly
from the N tabulated values every time one is desired. Most practical schemes star
at a nearby poinf (z;), then add a sequence of (hopefully) decreasing corrections, 2
as information from otheyf(z;)’s is incorporated. The procedure typically takes
O(N?) operations. If everything is well behaved, the last correction will be the
smallest, and it can be used as an informal (though not rigorous) bound on the error;

In the case of polynomial interpolation, it sometimes does happen that theg
coefficients of the interpolating polynomial are of interest, even though their use o
in evaluating the interpolating function should be frowned on. We deal with this
eventuality in§3.5.

Local interpolation, using a finite number of “nearest-neighbor” points, gives
interpolated valued (x) that do not, in general, have continuous first or higher
derivatives. That happens because, zasrosses the tabulated values, the
interpolation scheme switches which tabulated points are the “local” ones. (If suc
a switch is allowed to occur anywhegkse, then there will be a discontinuity in the
interpolated function itself at that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use
the “stiffer” interpolation provided by a so-callegbline function. A spline is
a polynomial between each pair of table points, but one whose coefficients a
determined “slightly” nonlocally. The nonlocality is designed to guarantee global
smoothness in the interpolated function up to some order of derivative. Cubic spline
(§3.3) are the most popular. They produce an interpolated function that is continuou
through the second derivative. Splines tend to be stabler than polynomials, with Ies
possibility of wild oscillation between the tabulated points.

The number of points (minus one) used in an interpolation scheme is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interest, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This
oscillation may have no relation at all to the behavior of the “true” function (see
Figure 3.0.1). Of course, adding poimtsse to the desired point usually does help,
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3.0 Introduction 107

(b)

Figure 3.0.1. (@ A smooth function (solid line) is more accurately interpolated by a high-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less
accurately approximated by ahigh-order polynomial (dotted line), which istoo “stiff,” than by alow-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not always available.

Unless there is solid evidence that the interpolating function is close in form to
the true function f, it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolationswith 3 or 4 points, we are perhapstolerant
of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring
of estimated errors.

When your table of values contains many more points than the desirable order
of interpolation, you must begin each interpolation with asearch for theright “local”
placein thetable. While not strictly a part of the subject of interpolation, thistask is
important enough (and often enough botched) that we devote §3.4 to its discussion.

The routines given for interpolation are also routines for extrapolation. An
important application, in Chapter 16, is their use in the integration of ordinary
differential equations. There, considerable care is taken with the monitoring of
errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An
interpolating function, which is perforce an extrapolating function, will typically go
berserk when the argument z is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
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108 Chapter 3.  Interpolation and Extrapolation

f(x,y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss this in §3.6.
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3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N — 1 through
the N points y1 = f(z1),y2 = f(x2),...,yn = f(zn) is given explicitly by
Lagrange's classical formula,

2 = (x — x2)(x — x3)...(x — N) (x —x1)(x — 23)...(x — 2N)
Plw) (1 — x2)(x1 — 23)...(x1 — TN) ! (x2 — x1) (12 — 23)...(T2 — xN)y2
(x —21)(x — x2)...(x —2N_1)
T (.I'N — ,Tl)(,TN — 1‘2)...(1‘]\/ — .”L'N_l)
(3.1.1)

There are N terms, each a polynomial of degree N — 1 and each constructed to be
zero at al of the x; except one, at which it is constructed to be ;.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) is Neville's algorithm, closely related to
and sometimes confused with Aitken’salgorithm, the latter now considered obsol ete.

Let P, be the vaue a x of the unique polynomial of degree zero (i.e,
a constant) passing through the point (z1,y1); so P = y1. Likewise define
Py, P;,...,Py. Now let P;o be the value at « of the unique polynomia of
degree one passing through both (x1,y1) and (z2,y2). Likewise Pas, Py, ...,
Pin—1)n- Similarly, for higher-order polynomials, upto P23 n, Whichisthe value
of the unique interpolating polynomial through al N points, i.e., the desired answer.
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