
910 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would useLi = − log2 pi bits to encode characteri (in the range1 ≤ i ≤ Nch),
if pi is its probability of occurrence. Huffman coding gives a way of rounding the
Li’s to close integer values and constructing a code with those lengths.Arithmetic
coding [1], which we now discuss, actually does manage to encode characters using
noninteger numbers of bits! It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbols in any desired radix. This latter
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent alphanumeric
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a real
numberR in the range0 ≤ R < 1. The longer the message, the more precision
required ofR. This is best illustrated by an example, so let us return to the fictitious
language, Vowellish, of the previous section. Recall that Vowellish has a 5 character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 shows how a message beginning “IOU” is encoded:
The interval [0, 1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the correspondingp i. We see that the first
message character, “I”, narrows the range ofR to 0.37 ≤ R < 0.46. This interval is
now subdivided into five subintervals, again with lengths proportional to thep i’s. The
second message character, “O”, narrows the range ofR to 0.3763 ≤ R < 0.4033.
The “U” character further narrows the range to0.37630 ≤ R < 0.37819. Any value
of R in this range can be sent as encoding “IOU”. In particular, the binary fraction
.011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, see§20.4.)

Of course there is the problem of knowing when to stop decoding. The fraction
.011000001 represents not simply “IOU,” but “IOU. . . ,” where the ellipses represent
an infinite string of successor characters. To resolve this ambiguity, arithmetic
coding generally assumes the existence of a specialNch + 1th character, EOM
(end of message), which occurs only once at the end of the input. Since EOM
has a low probability of occurrence, it gets allocated only a very tiny piece of
the number line.

In the above example, we gaveR as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required ofR for a long message. The answer is thatR is never actually represented
all at once. At any give stage we have upper and lower bounds forR represented
as a finite number of digits in the output radix. As digits of the upper and lower
bounds become identical, we can left-shift them away and bring in new digits at the
low-significance end. The routines below have a parameterNWK for the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs.) Since the process of discarding old digits and bringing in new ones is
performed identically on encoding and decoding, everything stays synchronized.
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Figure 20.5.1. Arithmetic coding of the message “ IOU...” in the fictitious language Vowellish.
Successive characters give successively finer subdivisions of the initial interval between 0 and 1. The final
value can be output as the digits of a fraction in any desired radix. Note how the subinterval allocated
to a character is proportional to its probability of occurrence.

The routine arcmak constructs the cumulative frequency distribution table used
to partition the interval at each stage. In the principal routine arcode, when an
interval of size jdif is to be partitioned in the proportions of some n to some ntot,
say, then we must compute (n*jdif)/ntot. With integer arithmetic, the numerator
is likely to overflow; and, unfortunately, an expression like jdif/(ntot/n) is not
equivalent. In the implementation below, we resort to double precision floating
arithmetic for this calculation. Not only is this inefficient, but different roundoff
errors can (albeit very rarely) make different machines encode differently, though any
one type of machine will decode exactly what it encoded, since identical roundoff
errors occur in the two processes. For serious use, one needs to replace this floating
calculation with an integer computation in a double register (not available to the
C programmer).

The internally set variable minint, which is the minimum allowed number
of discrete steps between the upper and lower bounds, determines when new low-
significance digits are added. minint must be large enough to provide resolution of
all the input characters. That is, we must have pi × minint > 1 for all i. A value
of 100Nch, or 1.1/ min pi, whichever is larger, is generally adequate. However, for
safety, the routine below takes minint to be as large as possible, with the product
minint*nradd just smaller than overflow. This results in some time inefficiency,
and in a few unnecessary characters being output at the end of a message. You can
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decrease minint if you want to live closer to the edge.
A final safety feature in arcmak is its refusal to believe zero values in the table

nfreq; a 0 is treated as if it were a 1. If this were not done, the occurrence in a
message of a single character whose nfreq entry is zero would result in scrambling
the entire rest of the message. If you want to live dangerously, with a very slightly
more efficient coding, you can delete the IMAX( ,1) operation.

#include "nrutil.h"
#include <limits.h> ANSI header file containing integer ranges.
#define MC 512
#ifdef ULONG_MAX Maximum value of unsigned long.
#define MAXINT (ULONG_MAX >> 1)
#else
#define MAXINT 2147483647
#endif
Here MC is the largest anticipated value of nchh; MAXINT is a large positive integer that does
not overflow.

typedef struct {
unsigned long *ilob,*iupb,*ncumfq,jdif,nc,minint,nch,ncum,nrad;

} arithcode;

void arcmak(unsigned long nfreq[], unsigned long nchh, unsigned long nradd,
arithcode *acode)

Given a table nfreq[1..nchh] of the frequency of occurrence of nchh symbols, and given
a desired output radix nradd, initialize the cumulative frequency table and other variables for
arithmetic compression in the structure acode.
{

unsigned long j;

if (nchh > MC) nrerror("input radix may not exceed MC in arcmak.");
if (nradd > 256) nrerror("output radix may not exceed 256 in arcmak.");

acode->minint=MAXINT/nradd;
acode->nch=nchh;
acode->nrad=nradd;
acode->ncumfq[1]=0;
for (j=2;j<=acode->nch+1;j++)

acode->ncumfq[j]=acode->ncumfq[j-1]+IMAX(nfreq[j-1],1);
acode->ncum=acode->ncumfq[acode->nch+2]=acode->ncumfq[acode->nch+1]+1;

}

The structure acode must be defined and allocated in your main program with
statements like this:

#include "nrutil.h"
#define MC 512 Maximum anticipated value of nchh in arcmak.
#define NWK 20 Keep this value the same as in arcode, below.
typedef struct {

unsigned long *ilob,*iupb,*ncumfq,jdif,nc,minint,nch,ncum,nrad;
} arithcode;

...
arithcode acode;
...
acode.ilob=(unsigned long *)lvector(1,NWK); Allocate space within acode.
acode.iupb=(unsigned long *)lvector(1,NWK);
acode.ncumfq=(unsigned long *)lvector(1,MC+2);
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Individual characters in a message are coded or decoded by the routine arcode,
which in turn uses the utility arcsum.

#include <stdio.h>
#include <stdlib.h>
#define NWK 20
#define JTRY(j,k,m) ((long)((((double)(k))*((double)(j)))/((double)(m))))
This macro is used to calculate (k*j)/m without overflow. Program efficiency can be improved
by substituting an assembly language routine that does integer multiply to a double register.

typedef struct {
unsigned long *ilob,*iupb,*ncumfq,jdif,nc,minint,nch,ncum,nrad;

} arithcode;

void arcode(unsigned long *ich, unsigned char **codep, unsigned long *lcode,
unsigned long *lcd, int isign, arithcode *acode)

Compress (isign = 1) or decompress (isign = −1) the single character ich into or out of
the character array *codep[1..lcode], starting with byte *codep[lcd] and (if necessary)
incrementing lcd so that, on return, lcd points to the first unused byte in *codep. Note
that the structure acode contains both information on the code, and also state information on
the particular output being written into the array *codep. An initializing call with isign=0
is required before beginning any *codep array, whether for encoding or decoding. This is in
addition to the initializing call to arcmak that is required to initialize the code itself. A call
with ich=nch (as set in arcmak) has the reserved meaning “end of message.”
{

void arcsum(unsigned long iin[], unsigned long iout[], unsigned long ja,
int nwk, unsigned long nrad, unsigned long nc);

void nrerror(char error_text[]);
int j,k;
unsigned long ihi,ja,jh,jl,m;

if (!isign) { Initialize enough digits of the upper and lower bounds.
acode->jdif=acode->nrad-1;
for (j=NWK;j>=1;j--) {

acode->iupb[j]=acode->nrad-1;
acode->ilob[j]=0;
acode->nc=j;
if (acode->jdif > acode->minint) return; Initialization complete.
acode->jdif=(acode->jdif+1)*acode->nrad-1;

}
nrerror("NWK too small in arcode.");

} else {
if (isign > 0) { If encoding, check for valid input character.

if (*ich > acode->nch) nrerror("bad ich in arcode.");
}
else { If decoding, locate the character ich by bisection.

ja=(*codep)[*lcd]-acode->ilob[acode->nc];
for (j=acode->nc+1;j<=NWK;j++) {

ja *= acode->nrad;
ja += ((*codep)[*lcd+j-acode->nc]-acode->ilob[j]);

}
ihi=acode->nch+1;
*ich=0;
while (ihi-(*ich) > 1) {

m=(*ich+ihi)>>1;
if (ja >= JTRY(acode->jdif,acode->ncumfq[m+1],acode->ncum))

*ich=m;
else ihi=m;

}
if (*ich == acode->nch) return; Detected end of message.

}
Following code is common for encoding and decoding. Convert character ich to a new
subrange [ilob,iupb).
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jh=JTRY(acode->jdif,acode->ncumfq[*ich+2],acode->ncum);
jl=JTRY(acode->jdif,acode->ncumfq[*ich+1],acode->ncum);
acode->jdif=jh-jl;
arcsum(acode->ilob,acode->iupb,jh,NWK,acode->nrad,acode->nc);
arcsum(acode->ilob,acode->ilob,jl,NWK,acode->nrad,acode->nc);
How many leading digits to output (if encoding) or skip over?
for (j=acode->nc;j<=NWK;j++) {

if (*ich != acode->nch && acode->iupb[j] != acode->ilob[j]) break;
if (*lcd > *lcode) {

fprintf(stderr,"Reached the end of the ’code’ array.\n");
fprintf(stderr,"Attempting to expand its size.\n");
*lcode += *lcode/2;
if ((*codep=(unsigned char *)realloc(*codep,

(unsigned)(*lcode*sizeof(unsigned char)))) == NULL) {
nrerror("Size expansion failed");

}
}
if (isign > 0) (*codep)[*lcd]=(unsigned char)acode->ilob[j];
++(*lcd);

}
if (j > NWK) return; Ran out of message. Did someone forget to encode a

terminating ncd?acode->nc=j;
for(j=0;acode->jdif<acode->minint;j++) How many digits to shift?

acode->jdif *= acode->nrad;
if (acode->nc-j < 1) nrerror("NWK too small in arcode.");
if (j) { Shift them.

for (k=acode->nc;k<=NWK;k++) {
acode->iupb[k-j]=acode->iupb[k];
acode->ilob[k-j]=acode->ilob[k];

}
}
acode->nc -= j;
for (k=NWK-j+1;k<=NWK;k++) acode->iupb[k]=acode->ilob[k]=0;

}
return; Normal return.

}

void arcsum(unsigned long iin[], unsigned long iout[], unsigned long ja,
int nwk, unsigned long nrad, unsigned long nc)

Used by arcode. Add the integer ja to the radix nradmultiple-precision integer iin[nc..nwk].
Return the result in iout[nc..nwk].
{

int j,karry=0;
unsigned long jtmp;

for (j=nwk;j>nc;j--) {
jtmp=ja;
ja /= nrad;
iout[j]=iin[j]+(jtmp-ja*nrad)+karry;
if (iout[j] >= nrad) {

iout[j] -= nrad;
karry=1;

} else karry=0;
}
iout[nc]=iin[nc]+ja+karry;

}

If radix-changing, rather than compression, is your primary aim (for example
to convert an arbitrary file into printable characters) then you are of course free to
set all the components of nfreq equal, say, to 1.
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20.6 Arithmetic at Arbitrary Precision

Let’s compute the number π to a couple of thousand decimal places. In doing
so, we’ ll learn some things about multiple precision arithmetic on computers and
meet quite an unusual application of the fast Fourier transform (FFT). We’ll also
develop a set of routines that you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic algorithm for π. Useful algorithms
are quadratically convergent, i.e., they double the number of significant digits at
each iteration. Quadratically convergent algorithms for π are based on the AGM
(arithmetic geometric mean) method, which also finds application to the calculation
of elliptic integrals (cf. §6.11) and in advanced implementations of the ADI method
for elliptic partial differential equations (§19.5). Borwein and Borwein [1] treat this
subject, which is beyond our scope here. One of their algorithms for π starts with
the initializations

X0 =
√

2

π0 = 2 +
√

2

Y0 = 4
√

2

(20.6.1)

and then, for i = 0, 1, . . . , repeats the iteration

Xi+1 =
1
2

(√
Xi +

1√
Xi

)

πi+1 = πi

(
Xi+1 + 1
Yi + 1

)

Yi+1 =
Yi

√
Xi+1 + 1√

Xi+1

Yi + 1

(20.6.2)

The value π emerges as the limit π∞.
Now, to the question of how to do arithmetic to arbitrary precision: In a

high-level language like C, a natural choice is to work in radix (base) 256, so that
character arrays can be directly interpreted as strings of digits. At the very end of
our calculation, we will want to convert our answer to radix 10, but that is essentially
a frill for the benefit of human ears, accustomed to the familiar chant, “ three point


