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2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,
L-U=A (2.31)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagona and above). For the case of
a4 x 4 matrix A, for example, equation (2.3.1) would look like this:

ain 0 0 0 B11 P2 P13 Bua a11 @12 a3 a4

a1 az 0 0 | .| 0 P22 B2z f2a| _ [a21 a2z a2z a2

agr az2 asz 0 0 0 [B33 B34 a3l as2 as3  as4

Q41 Q42 Q43 Q44 0 0 0 B a4l Q42 Q43 Q44
(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set
A-x=(L-U).-x=L-U-x)=b (23.3)
by first solving for the vector y such that
L-y=b (234)
and then solving
U-x=y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equationsis quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

by
Yy = —

Q11

. i1 (2.36)
N T | =2,3,....N

while (2.3.5) can then be solved by backsubstitution exactly asin equations (2.2.2)—
(2.2.9),

oy = N

BNN

1 N (2.3.7)
ri = — |y — Biix; 1=N-1,N-2,...,1

Bii Yy Z JLj

j=i+1
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44 Chapter 2. Solution of Linear Algebraic Equations

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) NV 2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from £ N? to £ N3, while (2.3.7) is unchanged at 5 N®.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at atime. Thisis adistinct advantage
over the methods of §2.1 and §2.2.

Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
1, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

aiBij+ - =ag

The number of termsin the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

<] i Prj + qizfay + - + @iy = agj (23.8)
=] i Prj + qizfay + - + @Bl = aij (23.9)
P> i1 B + By + -+ i B = agj (2.3.10)

Equations (2.3.8)«(2.3.10) total NV 2 equationsfor the N2 + N unknown a’sand
('s (the diagonal being represented twice). Sincethe number of unknownsis greater
than the number of equations, we areinvited to specify /V of the unknownsarbitrarily
andthentry to solvefor theothers. Infact, aswe shall seg, itisalways possibleto take

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set of N2 + IV equations (2.3.8)—(2.3.11) for al the o’sand 3’s by just arranging
the equations in a certain order! That order is as follows:

e Setay;; =1,i=1,...,N (equation 2.3.11).

e For each j = 1,2,3,..., N do these two procedures. First, for i =

1,2,...,7,use(2.3.8), (2.3.9), and (2.3.11) to solve for 3,;, namely

i—1
Bij = aij — Z ik Brj - (23.12)
k=1

(Wheni = 1in2.3.12the summationtermistaken to mean zero.) Second,
fori=7+1,5+2,...,N use(2.3.10) to solve for «;;, namely

1 =
Qij = 75— | Gij — Z kP | - (2.3.13)
Bsi k=1

Be sure to do both procedures before going on to the next ;.
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2.3 LU Decomposition and Its Applications 45
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Figure 2.3.1. Crout's algorithm for LU decomposition of a matrix. Elements of the origina matrix are
modified in the order indicated by lower case letters. a, b, ¢, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

If you work through a few iterations of the above procedure, you will see that
the o’s and 3’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every a ;;
is used only once and never again. This meansthat the corresponding o ;; or 3;; can
be stored in the location that the « used to occupy: the decompositionis “in place.”
[The diagonal unity elements «;; (equation 2.3.11) are not stored at al.] In brief,
Crout’'s method fills in the combined matrix of o's and s,

Bi1 Bz Pz Pua
a1 Paz P2z P

2.3.14
agr a3z B33 B ( )
a1 age oz Baa

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout's
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46 Chapter 2. Solution of Linear Algebraic Equations

method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don't actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is dlightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of ¢ = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of thesumisk = j — 1 (= ¢ — 1). This means that we don't have to
commit ourselves as to whether the diagonal element 3;; is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) o ;;'s
belowitinthecolumn,i = j+1,..., N,istobe"promoted” to becomethe diagonal
(. This can be decided after all the candidates in the column are in hand. Asyou
should be able to guess by now, we will choose the largest one as the diagonal
(pivot element), then do all the divisions by that element en masse. Thisis Crout’s
method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison asif we had initially scaled all
the equations to make their maximum coefficient equal to unity; thisis the implicit
pivoting mentioned in §2.1.

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-20 A small number.

void ludcmp(float **a, int n, int *indx, float *d)
Given a matrix a[1..n] [1..n], this routine replaces it by the LU decomposition of a rowwise
permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
indx[1..n] is an output vector that records the row permutation effected by the partial
pivoting; d is output as 1 depending on whether the number of row interchanges was even
or odd, respectively. This routine is used in combination with 1ubksb to solve linear equations
or invert a matrix.
{

int i,imax,j,k;

float big,dum,sum,temp;

float *vv; vv stores the implicit scaling of each row.

vv=vector(1,n);

*d=1.0; No row interchanges yet.
for (i=1;i<=n;i++) { Loop over rows to get the implicit scaling informa-
big=0.0; tion.

for (j=1;j<=n;j++)
if ((temp=fabs(al[il[j1)) > big) big=temp;

if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
No nonzero largest element.
vv[i]=1.0/big; Save the scaling.
}
for (j=1;j<=n;j++) { This is the loop over columns of Crout's method.
for (i=1;i<j;i++) { This is equation (2.3.12) except for ¢ = j.
sum=a[i] [j];
for (k=1;k<i;k++) sum -= al[il[k]l*alk][j];
ali] [j]=sum;
}
big=0.0; Initialize for the search for largest pivot element.
for (i=j;i<=n;i++) { This is ¢ = j of equation (2.3.12) and i = j+1... N
sum=a[il [j]; of equation (2.3.13).

for (k=1;k<j;k++)
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2.3 LU Decomposition and Its Applications 47

}

sum -= ali] [k]*alk][j];
ali] [jl=sum;
if ( (dum=vv[i]*fabs(sum)) >= big) {
Is the figure of merit for the pivot better than the best so far?

big=dum;
imax=i;
}
}
if (j != imax) { Do we need to interchange rows?
for (k=1;k<=n;k++) { Yes, do so...
dum=a[imax] [k] ;
alimax] [k]=alj] [k];
alj] [k]=dum;
}
*d = -(xd); ...and change the parity of d.
vv[imax]=vv[j]; Also interchange the scale factor.
}

indx[j]=imax;
if (aljl[j]l == 0.0) aljl[j1=TINY;
If the pivot element is zero the matrix is singular (at least to the precision of the
algorithm). For some applications on singular matrices, it is desirable to substitute
TINY for zero.
if (j '=n) { Now, finally, divide by the pivot element.
dum=1.0/(al3j1[j1);
for (i=j+1;i<=n;i++) alil[j] *= dum;
}

Go back for the next column in the reduction.

free_vector(vv,1,n);

Here isthe routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

void lubksb(float **a, int n, int *indx, float b[])

Solves the set of n linear equations A-X = B. Herea[1..n] [1..n] isinput, not as the matrix
A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] isinput
as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
B, and returns with the solution vector X. a, n, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine takes
into account the possibility that b will begin with many zero elements, so it is efficient for use
in matrix inversion.

{

int i,1i=0,ip,J;

float sum;

for (i=1;i<=n;i++) { When ii is set to a positive value, it will become the
ip=indx[il; index of the first nonvanishing element of b. We now
sum=b [ip] ; do the forward substitution, equation (2.3.6). The
blipl=blil; only new wrinkle is to unscramble the permutation
if (ii) as we go.

for (j=ii;j<=i-1;j++) sum -= ali] [j1*b[j];

else if (sum) ii=i; A nonzero element was encountered, so from now on we
b[il=sum; will have to do the sums in the loop above.

}

for (i=n;i>=1;i--) { Now we do the backsubstitution, equation (2.3.7).
sum=b[i];
for (j=i+1;j<=n;j++) sum -= a[il[jI1*b[jl;
bli]l=sum/a[i] [i]; Store a component of the solution vector X.

} All done!
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48 Chapter 2. Solution of Linear Algebraic Equations

The LU decomposition in ludcmp requires about %N 3 executions of the inner
loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is (% + 1 + 2)N3 = N3, the same
as gaussj.

To summarize, this is the preferred way to solve the linear set of equations
A-x=Dh

float **a,*b,d;
int n,*indx;

ludcmp(a,n,indx,&d) ;
lubksb(a,n,indx,b);

The answer x will be given back in b. Your original matrix A will have
been destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

lubksb(a,n,indx,b);

not, of course, with the original matrix A, but with a and indx as were already
set by ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

#define N ...
float *x*a,*xy,d,*col;
int i, j,*indx;

ludcmp(a,N,indx,&d) ; Decompose the matrix just once.
for(j=1;j<=N;j++) { Find inverse by columns.
for(i=1;i<=N;i++) col[i]=0.0;
col[jl=1.0;

lubksb(a,N,indx,col);
for(i=1;i<=N;i++) y[il[jl=coll[il;

The matrix y will now contain the inverse of the origina matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.
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2.3 LU Decomposition and Its Applications 49

Incidentally, if you ever have the need to compute A = - B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’s inverse. This saves a whole
matrix multiplication, and is also more accurate.

Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

N
det =[] 8 (2.3.15)
j=1

We don't, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of setting
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to 1udcmp, with no subse-
guent backsubstitutions by lubksb.

#define N ...
float *x*a,d;
int j,*indx;

ludcmp(a,N,indx,&d) ; This returns 4 as +1.
for(j=1;j<=N;j++) d *= a[jl[j];

The variable d now contains the determinant of the origina matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A isreal, but the right-hand side vector is complex, say b + <d, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A +iC) - (x +iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and 1ubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed. (See §§1.2 and 5.4 for
discussion of complex arithmetic in C.)

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



50 Chapter 2. Solution of Linear Algebraic Equations

A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A-x—C-y=b

(2.3.17)
C-x+A-y=d

which can be written as a 2N x 2N set of real equations,

(¢ %)-6)-(8) 2310

and then solved with 1udcmp and 1ubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is aso a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of a2/N x 2N problem involves 8 times the work of
an N x N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.
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2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systemsthat are band diagonal, with nonzero el ements
only along afew diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O (V') operations, and the whole solution can be encoded
very concisely. Theresulting routinetridag isonethat wewill usein later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equationsto be solvedis

bl C1 0 U1l T1

az by ca - Us o
. (24.)

an—1 byn—1 cN—1 UN—1 TN-1

0 anN bN UN TN
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