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which (peeling of theC™''s one at a time) implies a solution
X:C1~C2~C3'~~b (218)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, th€'s must be applied tb in thereverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.
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The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, al
triangular decomposition schemes such as will be discussed in the next sectio
Gaussian elimination reduces a matrix not all the way to the identity matrix, but = ¢
only halfway, to a matrix whose components on the diagonal and above (say) remai
nontrivial. Let us now see what advantages accrue.

[reus pi
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Suppose that in doing Gauss-Jordan elimination, as describgzliinwe at
each stage subtract away rows ob&ow the then-current pivot element. When,
is the pivot element, for example, we divide the second row by its value (as before)
but now use the pivot row to zero onfys, andays, Notaio (See equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so tha
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):
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Here the primes signify that thes andb’s do not have their original numerical
values, but have been maodified by all the row operations in the elimination to this
point. The procedure up to this point is term@dussian elimination.
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Backsubstitution

But how do we solve for the’s? The lastz (x4 in this example) is already

isolated, namely

xy = b} /aly, (2.2.2
With the lastz known we can move to the penultimate
1
x3 = —[bs — Taaky] (2.2.3
a33

and then proceed with the before that one. The typical step is

a Z awgc7 (2.2.4

Jj=1+1

T, = ——

The procedure defined by equation (2.2.4) is cabbadksubstitution. The com-

bination of Gaussian elimination and backsubstitution yields a solution to the set

of equations.

The advantage of Gaussian elimination and backsubstitution over Gauss-Jord

elimination is simply that the former is faster in raw operations count;

innermost loops of Gauss-Jordan elimination, each containing one subtraction an
one multiplication, are executed® and N2M times (where there ar® equations
and M unknowns). The corresponding loops in Gaussian elimination are executeds
only 3]\73 times (only half the matrix is reduced, and the increasing numbers of 3
predictable zeros reduce the count to one-third), é[MZM times, respectively.
Each backsubstitution of a right-hand S|de§—lé»f2 executions of a similar loop (one
multiplication plus one subtraction). FdZ < N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jord
(We could reduce this advantage to a factor 1.:ititycomputing the inverse matrix

as part of the Gauss-Jordan scheme.)
For computing the inverse matrix (which we can view as the casd 6t N

right-hand sides, namely th¥ unit vectors which are the columns of the identity

matrix), Gaussian elimination and backsubstitution at first glance regmﬁe(matrlx

reductlon)+ L N3 (right-hand side manipulations) 5 L N3 (N backsubstitutions)
4N3 loop executlons which is more than the&? for Gauss Jordan. However, the
unlt vectors are quite special in containing all zeros except for one element. If thi

is taken into account, the right-side manipulations can be reduced toéd\ﬁifyloop

executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian elimination and Gauss-Jordan elimination share the disadvanta

that all right-hand sides must be known in advance. Ihiedecomposition method

in the next section does not share that deficiency, and also has an equally sm

operations count, both for solution with any number of right-hand sides, and for
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matrix inversion. For this reason we will not implement the method of Gaussian

elimination as a routine.
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2.3 LU Decomposition and Its Applications

Suppose we are able to write the mathixas a product of two matrices,
L-U=A (2.3.)

wherelL is lower triangular (has elements only on the diagonal and below) End
is upper triangular (has elements only on the diagonal and above). For the case of
a4 x 4 matrix A, for example, equation (2.3.1) would look like this:

a1 0 0 0 B11 P2 P13 Bua a1l a2 a3 a4

a1 az 0 0 | .| 0 P22 B2z f2a| _ [a21 a2z a2z a2

agr az2 asz 0 0 0 [B33 B34 a3l as2 as3  as4

Q41 Q42 Q43 Q44 0 0 0 B a4l Q42 Q43 Q44
(2.3.2
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We can use a decomposition such as (2.3.1) to solve the linear set
A-x=(L-U).-x=L-U-x)=b (2.3.3
by first solving for the vectoy such that

L-y=b (2.3.4
and then solving
U-x=y (2.3.95
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What is the advantage of breaking up one linear set into two successive ones
The advantage is that the solution of a triangular set of equations is quite trivial, a
we have already seen §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

by
yr=—
Q11
1 i—1 (23@
i =— [bi — ijYj 1 =2,3,...,N
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while (2.3.5) can then be solved bgcksubstitution exactly as in equations (2.2.2)—
(2.2.4),

oy = IV
BNN
N (2.3.9
1
vi=— lyi— S Bz, i=N_-1,N-2,...1
B |V 2 P

j=i+1
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