Chapter 2. Solution of Linear
Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a1121 + a12x2 + a1373 + - +aiNTy = by
a21%1 + a22%2 + a2373 + -+ + aaNTN = b2

as1z1 + azer2 + agzrs + - +agyry = by (2.0.1)

ap1T1 + apa®e + apsxs + - +FapuNTN = b

Here the N unknowns z;, j = 1,2,..., N are related by M equations. The
coefficients a;; withi = 1,2,..., M and j = 1,2,..., N are known numbers, as
are the right-hand side quantities b;, i = 1,2,..., M.

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of = ;’s. Analytically, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if al equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additional things can go wrong:

e While not exact linear combinations of each other, some of the equations
may be so close to linearly dependent that roundoff errorsin the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.
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2.0 Introduction 33

e Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of z’s that are wrong, as can be discovered by direct substitution back
into theoriginal equations. Thecloser aset of equationsisto being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages’
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a “typical” linear problem. But hereis aroughidea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 hit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended to NV as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets, N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices
Equation (2.0.1) can be written in matrix form as
A-x=b (2.0.2)

Here the raised dot denotes matrix multiplication, A isthe matrix of coefficients, and
b is the right-hand side written as a column vector,

ail a2 ... GIN b1
a a ...oa b

A — 21 22 2N b — 2 (2.0.3)
ayi am2 ... GMN by

By convention, the first index on an element «;; denotes its row, the second
index its column. For most purposes you don’t need to know how a matrix is stored
in a computer’s physical memory; you simply reference matrix elements by their
two-dimensional addresses, e.g., asq4 = a[3] [4]. We have aready seen, in §1.2,
that this C notation can in fact hide a rather subtle and versatile physical storage
scheme, “pointer to array of pointersto rows.” You might wish to review that section
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34 Chapter 2. Solution of Linear Algebraic Equations

at thispoint. Occasionally it is useful to be able to peer through the vell, for example
to pass awholerow a[il [j], j=1,..., N by thereference al[i].

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

e Solution of thematrix equation A -x = b for an unknownvector x, where A
isasquare matrix of coefficients, raised dot denotes matrix multiplication,
and b is a known right-hand side vector (§2.1-52.10).

o Solution of more than one matrix equation A - X ; = b, for aset of vectors
X;, 7 =1,2,..., each corresponding to adifferent, known right-hand side
vector b;. In this task the key simplification is that the matrix A is held
constant, while the right-hand sides, the b’s, are changed (§2.1-52.10).

e Calculation of thematrix A~ whichisthematrix inverseof asquarematrix
A ie, A-A ' =A"1. A =1 where 1l istheidentity matrix (all zeros
except for ones on the diagonal). This task is equivalent, foran N x N
matrix A, to the previous task with NV different b;’s (j = 1,2,...,N),
namely the unit vectors (b; = &l zero elements except for 1 in the jth
component). The corresponding x’s are then the columns of the matrix
inverse of A (§2.1 and §2.3).

e Calculation of the determinant of a square matrix A (§2.3).

If M < N, orif M = N bhut the equations are degenerate, then there
are effectively fewer equations than unknowns. In this case there can be either no
solution, or el se morethan one solution vector x. Inthelatter event, the solution space
consists of a particular solution x,, added to any linear combination of (typically)
N — M vectors (which are said to be in the nullspace of the matrix A). The task
of finding the solution space of A involves

e Singular value decomposition of a matrix A.

This subject is treated in §2.6.

In the opposite case there are more equations than unknowns, M > N. When
this occurs there is, in general, no solution vector x to equation (2.0.1), and the set
of equations is said to be overdetermined. It happens frequently, however, that the
best “compromise” solution is sought, the one that comes closest to satisfying all
equations simultaneoudly. If closeness is defined in the least-squares sensg, i.e., that
the sum of the sguares of the differences between the left- and right-hand sides of
equation (2.0.1) be minimized, then the overdetermined linear problem reduces to
a (usually) solvable linear problem, caled the

e Linear least-squares problem.
Thereduced set of equationsto be solved can bewritten asthe V x IV set of equations

(AT -A)-x= (AT .b) (2.0.4)

where AT denotes the transpose of the matrix A. Equations (2.0.4) are called the
normal equations of the linear least-squares problem. There is a close connection
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2.0 Introduction 35

between singular value decomposition and the linear |east-squares problem, and the
latter is also discussed in §2.6. You should be warned that direct solution of the
normal equations (2.0.4) is not generally the best way to find least-squares solutions.

Some other topics in this chapter include

o |terative improvement of a solution (§2.5)

e Various special forms. symmetric positive-definite (§2.9), tridiagonal
(§2.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(82.7)

e Strassen’s “fast matrix inversion” (§2.11).
Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything thereisto
know about the tasks that have been defined above. In many cases you will have no
alternative but to use sophisticated black-box program packages. Several good ones
are available, though not alwaysin C. LINPACK was devel oped at Argonne National
Laboratories and deserves particular mention because it is published, documented,
and available for free use. A successor to LINPACK, LAPACK, is now becoming
available. Packages available commercialy (though not necessarily in C) include
those in the IMSL and NAG libraries.

You should keep in mind that the sophisticated packages are designed with very
large linear systemsin mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in several versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). lterative
methods become preferable when the battle against loss of significanceisin danger
of being logt, either due to large NV or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (52.5).
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2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other method. For solving sets of linear egquations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A ~!. However, its principal weaknesses are (i) that it
requires al the right-hand sides to be stored and manipulated at the same time, and
(i) that when the inverse matrix is not desired, Gauss-Jordan is three times slower
than the best alternative techniquefor solving asinglelinear set (§2.3). Themethod's
principal strength is that it is as stable as any other direct method, perhaps even a
bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but onethat is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methodsin §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routinesin the next two sections.

For clarity, and to avoid writing endless ellipses (- - -) wewill write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N x N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below is,
of course, general.
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