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The correct way to difference Sdbdinger's equatioft.2] is to useCayley's
formfor the finite-difference representationaf*/*, which is second-order accurate
and unitary:

_ 1—LiHAt

emilt 20 (19.2.35
1 + §lHAt =
In other words, g
L+ LiHA) Y = (1 - LiHAY) YT 19.2.3 §
(1+ §iHAYY;* = (1= JiHAY Y] (19236
o
On replacingH by its finite-difference approximation im, we have a complex 8
tridiagonal system to solve. The method is stable, unitary, and second-order accurate

in space and time. In fact, it is simply the Crank-Nicolson method once again!
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19.3 Initial Value Problems in Multidimensions

The methods described §19.1 and§19.2 for problems inl + 1 dimension
(one space and one time dimension) can easily be generali2éd-tt dimensions.
However, the computing power necessary to solve the resulting equations is eno
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100100 mesh points requires least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programsegn
small grids, e.g.,8 x 8, even though the resulting accuracy is so poor as to be
useless. When your program is all debugged and demonstrably stahlgpu can
increase the grid size to a reasonable one and start looking at the results. We ha
actually heard someone protest, “my program would be unstable for a crude grid
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show uplarger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you
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are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDESs, you introduce
spurious solutions to the difference equations. This does not create a problem if the
all happen to decay exponentially; otherwise you are going to see all hell break loos
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Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

ou JF, JF,
—=-V:-F=- 4 =L 19.3.
ot < oz oy ) (1933
Use a spatial grid with
Ij =X —|—_]A
19.3.
y=yo +1A ( 2
We have choselhz = Ay = A for simplicity. Then the Lax scheme is
n+1 1 n n n n
Uy = Z(ujJrl,l Fulg Ul Hul )
At (19.3.3
- E( e = Fl g+ Fl g — FR )

Note that as an abbreviated notatibh, ; and F;_; refer to F;, while F;; and
F,_, refer to F,.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with
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F, = vu, F, =vyu (19.3.9

N 8pIsino

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers 6fin time,
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Substituting in equation (19.3.3), we find

&= %(COS kg A + coskyA) — iy sin by A — iay, sin ky A (19.3.6

where
v, At vy At

A )

(19.3.7

Ay =
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The expression fof¢|? can be manipulated into the form

1
€] =1 — (sin® by A +sin® k, A) {5 — (a2 + o@)}
) (19.3.8
- Z(COS ke A — coskyA)? — (o sinkz A — a, sin k,A)?

The last two terms are negative, and so the stability requirefignt 1 becomes

5 (2 + ai) >0 (19.3.9
or
At < 8 (19.3.19
R =

This is an example of the general result for thedimensional Courant
condition: If|v| is the maximum propagation velocity in the problem, then

A
At < 19.3.1
Vol ( i
is the Courant condition.
Diffusion Equation in Multidimensions
Let us consider the two-dimensional diffusion equation,
ou ?u  O%u
o5 =P (@ + 8—y2) (19.3.12

An explicit method, such as FTCS, can be generalized from the one-dimension
case in the obvious way. However, we have seen that diffusive problems are usual
best treated implicitly. Suppose we try to implement the Crank-Nicolson scheme in

two dimensions. This would give us

n n 1 n n n
wptt =+ o (SRt 4 o2y + 02t + o) (19.3.13
Here DA
t
a=—= A=Ax=Ay (19.3.14
Soulty =l —2ul +uly (19.3.15

and similarly for62u”l This is certainly a viable scheme; the problem arises in

Q
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solving the coupled I|near equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One

possibility is to use a suitable sparse matrix technique {8etand;19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicolson algorithm. It is still second-order accurate in time

and space, and unconditionally stable, but the equations are easier to solve than
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(19.3.13). Called thalternating-direction implicit method (ADI), this embodies the
powerful concept obperator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of\siz2
In each substep, a different dimension is treated implicitly:

J;l @ gl y gl

2 (19.3.16
ntl  nt1j2 1 §2un T2 4 g2 nt1
N e G N B

1
T2 wl + sa (52u"+1/2 L 52un )

The advantage of this method is that each substep requires only the solution of
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also calliede splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

ou
o = Lu (19.3.17

whereL is some operator. Whil€ is not necessarily linear, suppose that it can at
least be written as a linear sumwf pieces, which act additively om,

Lu=Liu+ Lou+ -+ Lypu (19.3.18

Finally, suppose that faach of the pieces, you already know a differencing scheme
for updating the variable from timestepn to timestepn + 1, valid if that piece

of the operator were thenly one on the right-hand side. We will write these
updatings symbolically as

u" Tt = Uy (u”, At)

u" Tt = Us (u™, At)
(19.3.19

u" = Uy, (u™, At)

Now, one form of operator splitting would be to get framto n + 1 by the
following sequence of updatings:

un+(1/m) — Ul(u",At)

un+(2/m) — uz(un-i-(l/m)’ At)
(19.3.20

un+1 — um(un-l-(m—l)/m’At)
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For example, a combined advective-diffusion equation, such as

u u 2u
% = —vg—x + D% (19.3.21
might profitably use an explicit scheme for the advective term combined with a
Crank-Nicolson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: lZét now denote an updating method that
includes algebraicallgll the pieces of the total operatdr but which is desirably
stable only for the £, piece; likewiselts, ... U,,. Then a method of getting from
u” to u"t! s

u Y™ =y (u”, At/m)

untm = Z/lg(u”+1/m, At/m)
(19.3.22

untl = Z/lm(unﬂm*l)/m, At/m)

The timestep for each fractional step in (19.3.22) is now ayiy of the full timestep,
because each partial operation acts with all the terms of the original operator.
Equation (19.3.22) is usually, though not always, stable as a differencing schem
for the operatoL. In fact, as a rule of thumb, it is often sufficient to have stéblis
only for the operator pieces having the highest number of spatial derivatives — the:
otherld;’s can beunstable — to make the overall scheme stable!
It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.
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19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems
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As discussed ir319.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A-u=b (19.4.7

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.



