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(Don't let this notation mislead you into inverting the full maté¥(x) + AS. You
only need to solve for somg the linear systenfW (z) + AS) -y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have siz&, the number of measurements. There is no discretization of
the underlying variable, so M does not come into play at all. One solves a different
N x N set of linear equations for each desired value.oBy contrast, in (18.5.8),
one solves aii/ x M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitabl
for other than one-dimensional problems.

How does one choosg within the Backus-Gilbert scheme? As already
mentioned, you can (in some casheuld) make the choicbeforeyou see any actual
data. For a given trial value of, and for a sequence afs, use equation (18.6.12)
to calculatey(z); then use equation (18.6.6) to plot the resolution functi@@s x')
as a function oft’. These plots will exhibit the amplitude with which different
underlying values:’ contribute to the pointi(x) of your estimate. For the same
value of), also plot the function /Var[u(z)] using equation (18.6.8). (You need an
estimate of your measurement covariance matrix for this.)

As you change\ you will see very explicitly the trade-off between resolution
and stability. Pick the value that meets your needs. You can even chdodee a
function ofz, A = A(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations forzeadkor
the chosen value or values &f you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processin
real data — you need to judge whether a particular feature, a spike or jump fo
example, is genuine, and/or is actually resolved. The Backus-Gilbert method ha
found particular success among geophysicists, who use it to obtain information abou
the structure of the Earth (e.qg., density run with depth) from seismic travel time data.
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18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methodsbreak
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should
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18.7 Maximum Entropy Image Restoration 819

also comment in passing that the connection between maximum entropy inversion
methods, considered here, and maximum entropy spectral estimation, discussed in
§13.7, is rather abstract. For practical purposes the two techniques, though both
namedmaximum entropy method or MEM, are unrelated.

Bayes’ Theorem, which follows from the standard axioms of probability, relates
the conditional probabilities of two events, sdyand B:

Proh(B|A)

Probh(A|B) = Proh(A) ProbB)

(18.7.1

Here ProA|B) is the probability ofA given that B has occurred, and similarly for
Prol( B|A), while Prolf A) and ProlyB) are unconditional probabilities.

“Bayesians” (so-called) adopt a broader interpretation of probabilities than do
so-called “frequentists.” To a Bayesia®(A|B) is a measure of the degree of
plausibility of A (given B) on a scale ranging from zero to one. In this broader view,
A and B need not be repeatable events; they can be propositions or hypothese
The equations of probability theory then become a set of consistent rules for
conducting inferenci.2]. Since plausibility is itself always conditioned on some,
perhaps unarticulated, set of assumptions, all Bayesian probabilities are viewed
conditional on some collective background information

SupposeH is some hypothesis. Even before there exist any explicit data,
a Bayesian can assign t§ some degree of plausibility ProH|I), called the
“Bayesian prior.” Now, when some dafa; comes along, Bayes theorem tells how
to reassess the plausibility df,
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Prol( D, |HI)

ProlH|D1I) = Prol H|I) Prob Dy 1)

(18.7.2

The factor in the numerator on the right of equation (18.7.2) is calculable as the
probability of a data seajiven the hypothesis (compare with “likelihood” §15.1).
The denominator, called the “prior predictive probability” of the data, is in this case
merely a normalization constant which can be calculated by the requirement tha
the probability of all hypotheses should sum to unity. (In other Bayesian contexts
the prior predictive probabilities of two qualitatively different models can be used
to assess their relative plausibility.)

If some additional datd), comes along tomorrow, we can further refine our
estimate of H's probability, as
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PrOt(DQ |HD1])

PrOt(H|D2DII) = Prot(H|D11) PrOlZ(D2|DII)

(18.7.3

Using the product rule for probabilities, PiiobB|C) = Prol A|C)Prok B|AC),
we find that equations (18.7.2) and (18.7.3) imply

Prot(D2D1|HI)

Proi H|Dy D1 1) = Prob(H|I) Prob(D2 Dy |1)

(18.7.4

which shows that we would have gotten the same answer if all the dafa,
had been taken together.
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From a Bayesian perspective, inverse problems are inference profslem3he
underlying parameter setis a hypothesis whose probability, given the measured
data valueg, and the Bayesian prior Praij/) can be calculated. We might want
to report a single “best” inverse, the one that maximizes

Prok(u|TI)
Prok(c|])

over all possible choices af. Bayesian analysis also admits the possibility of
reporting additional information that characterizes the region of possibleith
high relative probability, the so-called “posterior bubble™un

The calculation of the probability of the datagiven the hypothesis proceeds
exactly as in the maximum likelihood method. For Gaussian errors, e.g., itis given by

Proku|cl) = Prok(c|ul) (18.7.5
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€3 IO OO U MMM/

Prol(cjul) = exp(—%x2)Au1Au2 < Aupy (18.7.6

where x? is calculated fromu andc using equation (18.4.9), and theu ,'s are
constant, small ranges of the components afhose actual magnitude is irrelevant,
because they do not depend wifcompare equations 15.1.3 and 15.1.4).

In maximum likelihood estimation we, in effect, chose the prior Pupb to
be constant. That was a luxury that we could afford when estimating a small numbeg.
of parameters from a large amount of data. Here, the number of “parameters
(components ofi) is comparable to or larger than the number of measured values
(components ot); we need to have a nontrivial prior, Prdh|I), to resolve the
degeneracy of the solution.

In maximum entropy image restoration, that is whemropy comes in. The
entropy of a physical system in some macroscopic state, usually defipiedhe
logarithm of the number of microscopically distinct configurations that all have
the same macroscopic observables (i.e., consistent with the observed macrosco
state). Actually, we will find it useful to denote thnegative of the entropy, also
called thenegentropy, by H = —S (a notation that goes back to Boltzmann). In
situations where there is reason to believe thatahwiori probabilities of the
microscopic configurations are all the same (these situations are catjedic), then
the Bayesian prior Pr@h|I) for a macroscopic state with entropys' is proportional
to exp(S) or exp(—H).

MEM uses this concept to assign a prior probability to any given underlying
functionu. For examplds-7], suppose that the measurement of luminance in each
pixel is quantized to (in some units) an integer value. Let
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M
U=> u, (18.7.7
p=1
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be the total number of luminance quanta in the whole image. Then we can base our
“prior” on the notion that each luminance quantum has an egpaiori chance of

being in any pixel. (Sef] for a more abstract justification of this idea.) The number

of ways of getting a particular configuratianis

U!
aaal ] X exp Zu# In(u,/U)+ (an — Zlnu#>] (18.7.8
I

Unpm
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Here the left side can be understood as the number of distinct orderings of all
the luminance quanta, divided by the numbers of equivalent reorderings within
each pixel, while the right side follows by Stirling’s approximation to the factorial
function. Taking the negative of the logarithm, and neglecting terms of dsgér

in the presence of terms of ordér, we get the negentropy

M
= w,In(u,/U) (18.7.9
p=1
From equations (18.7.5), (18.7.6), and (18.7.9) we now seek to maximize

Probu|c) o« exp {—%XQ} exp[—H (u)] (18.7.10

or, equivalently,

minimize: — In[Prok(u|c)] = %XQ[U] + H(u) = %XQ[U] + Zu# In(u,/U)
"~ (18.7.13

This ought to remind you of equation (18.4.11), or equation (18.5.6), or in fact any of >
our previous minimization principles along the lines4f A\, whereAB = H (u)

is a regularizing operator. Where @ We need to put it in for exactly the reason
discussed following equation (18.4.11): Degenerate inversions are likely to be abl
to achieve unrealistically small values gf. We need an adjustable parameter to
bring x? into its expected narrow statistical range\oft (2V) /2. The discussion at
the beginning 0f18.4 showed that it makes no difference which term we attach the
A to. For consistency in notation, we absorb a factor 2 indmd put it on the entropy
term. (Another way to see the necessity of an undetermirfadtor is to note that it

is necessary if our minimization principle is to be invariant under changing the units
in which u is quantized, e.qg., if an 8-bit analog-to-digital converter is replaced by a
12-bit one.) We can now also put “hats” back to indicate that this is the procedur
for obtaining our chosen statistical estimator:
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M
minimize: A+ AB = x’[U] + AH (T) = x[U] + A Y _ @, In(@,,) (18.7.13
pn=1

(Formally, we might also add a second Lagrange multip\ié//, to constrain the
total intensitylU to be constant.)

Itis not hard to see that the negentroffy(,U), is in fact a regularizing operator,
similar toG - U (equation 18.4.11) ot - H - U (equation 18.5.6). The following of
its properties are noteworthy:

1. WhenU is held constantf (U) is minimized foru, = U/M = constant, so it
smooths in the sense of trying to achieve a constant solution, similar to equation
(18.5.4). The fact that the constant solution is a minimum follows from the fact
that the second derivative afln v is positive.
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822 Chapter 18.  Integral Equations and Inverse Theory

2. Unlike equation (18.5.4), howevet,(U) is local, in the sense that it does not
difference neighboring pixels. It simply sums some functiomere

flw)=ulnu (18.7.13

over all pixels; it is invariant, in fact, under a complete scrambling of the pixels

in an image. This form implies thatf (U) is not seriously increased by the

occurrence of a small number of very bright pixels (point sources) embeddedz
in a low-intensity smooth background.

3. H(U) goes to infinite slope as any one pixel goes to zero. This causes it to8
enforce positivity of the image, without the necessity of additional deterministic 3
constraints.

4. The biggest difference betweé&h(U) and the other regularizing operators that
we have met is that (U) is not a quadratic functional af, so the equations
obtained by varying equation (18.7.12) ammlinear. This fact is itself worthy
of some additional discussion.

Nonlinear equations are harder to solve than linear equations. For imag
processing, however, the large number of equations usually dictates an iterativ
solution procedure, even for linear equations, so the practical effect of the nonlinearit
is somewhat mitigated. Below, we will summarize some of the methods that are
successfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery2
from an incomplete set of Fourier coefficients, the superior performance of MEM 3
inversion can be, in part, traced to the nonlinearity&fl). One way to see thi§]
is to consider the limit of perfect measurememts— 0. In this case the? term in
the minimization principle (18.7.12) gets replaced by a set of constraints, each withg
its own Lagrange multiplier, requiring agreement between model and data; that is,

minimize: >\ lcj — > Ry,
j

m
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+ H(Q) (18.7.14

(cf. equation 18.4.7). Setting the formal derivative with respeat,tdo zero gives

OH ~
o = f/(uu) = Z/\J'Rju (18.7.15

duy,

or defining a function as the inverse function of’,

Uy =G [ Y NRju (18.7.16

J
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This solution is only formal, since the;’s must be found by requiring that equation
(18.7.16) satisfy all the constraints built into equation (18.7.14). However, equation
(18.7.16) does show the crucial fact thafifs linear, then the solutioni containsonly

a linear combination of basis functiois;,, corresponding to actual measurements
j. This is equivalent to setting unmeasukgts to zero. Notice that the principal
solution obtained from equation (18.4.11) in fact has a lifgar
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18.7 Maximum Entropy Image Restoration 823

In the problem of incomplete Fourier image reconstruction, the typital
has the formexp(—27ik; - X,,), wherex,, is a two-dimensional vector in the image
space andk,, is a two-dimensional wave-vector. If an image contains strong point
sources, then the effect of setting unmeasurgsl to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actual extended,
low-intensity image features lying between the point sources. If, however, the slope
of G is smaller for small values of its argument, larger for large values, then ripples§
in low-intensity portions of the image are relatively suppressed, while strong point
sources will be relatively sharpened (“superresolution”). This behavior on the slope:
of G is equivalent to requiring””’(u) < 0. For f(u) = ulnw, we in fact have
" (u) = —1/u? < 0.

In more picturesque language, the nonlinearity acts to “create” nonzero value
for the unmeasured;’s, so as to suppress the low-intensity ripple and sharpen the
point sources.

MMM/ duq
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Is MEM Really Magical?

How unique is the negentropy functional (18.7.9)? Recall that that equation is
based on the assumption that luminance elementa priori distributed over the
pixels uniformly. If we instead had some other preferaguiori image in mind, one
with pixel intensitiesn,,, then it is easy to show that the negentropy becomes

M
H(u) = uyIn(u,/m,) + constant (18.7.17
p=1

|rewa puss Jo ‘(Ajuo eatswy HlJON) £2¥2-2.8-008-T II

(the constant can then be ignored). All the rest of the discussion then goes through=
More fundamentally, and despite statements by zealots to the coftrahere

is actually nothing universal about the functional forfifw) = wlnwu. In some

other physical situations (for example, the entropy of an electromagnetic field in the

limit of many photons per mode, as in radio-astronomy) the physical negentropy

AJ3SISNJ1J3UIP 01

functional is actuallyf(u) = —Inu (seel5] for other examples). In general, the @
guestion, “Entropy of what?” is not uniquely answerable in any particular situation. %’
(See referenci®] for an attempt at articulating a more general principle that reduces &
to one or another entropy functional under appropriate circumstances.) 5

The four numbered properties summarized above, plus the desirable sign fo
nonlinearity,f"”’(u) < 0, are all as true fof (u) = —Inw as forf(u) = ulnu. In &
fact these properties are shared by a nonlinear function as simple:as= — \/u, i
which has no information theoretic justification at all (no logarithms!). MEM §
reconstructions of test images using any of these entropy forms are thually%P

indistinguishablés].

By all available evidence, MEM seems to be neither more nor less than on
usefully nonlinear version of the general regularization schdme\5 that we have
by now considered in many forms. Its peculiarities become strengths when applied
to the reconstruction from incomplete Fourier data of images that are expected
to be dominated by very bright point sources, but which also contain interesting
low-intensity, extended sources. For images of some other character, there is no
reason to suppose that MEM methods will generally dominate other regularization
schemes, either ones already known or yet to be invented.
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824 Chapter 18.  Integral Equations and Inverse Theory

Algorithms for MEM

The goal is to find the vectdi that minimizes4 + A\B where in the notation
of equations (18.5.5), (18.5.6), and (18.7.13),

=lb-A-TU* B= Zf(aﬂ) (18.7.18

Compared with a “general” minimization problem, we have the advantage that
we can compute the gradients and the second partial derivative matrices (Hessia;

matrices) explicitly,

2
VA=2AT .A.G-AT.b) oA =[2AT . A],,
01,01, (18.7.19
. 9’°B N o
[VB], = f'(uy) PP Opup " ()
ou,,0u,

Itis important to note that whilgl's second partial derivative matrix cannot be stored
(its size is the square of the number of pixels), it can be applied to any vector by
first applyingA, thenA”. In the case of reconstruction from incomplete Fourier
data, or in the case of convolution with a translation invariant point spread functio

these applications will typically involve several FFTs. Likewise, the calculation o

the gradient.4 will involve FFTs in the application oA andA”'.

While some success has been achieved with the classical conjugate gradie

method §10.6), it is often found that the nonlinearity iftu) = wlnwu causes

problems. Attempted steps that gisievith even one negative value must be cut in

magnitude, sometimes so severely as to slow the solution to a crawl. The underlying
problem is that the conjugate gradient method develops its information about thed
inverse of the Hessian matrix a bit at a time, while changing its location in the searchm
space. When a nonlinear function is quite different from a pure quadratic form, th

old information becomes obsolete before it gets usefully exploited.

Skilling and collaboratort,7,10,11] developed a complicated but highly suc-
cessful scheme, wherein a minimum is repeatedly sought not along a single searc
direction, but in a small- (typically three-) dimensional subspace, spanned by vector
that are calculated anew at each landing point. The subspace basis vectors
chosen in such a way as to avoid directions leading to negative values. One of t
most successful choices is the three-dimensional subspace spanned by the vect

with components given by

i

e?) =1,[VB,

o) = U 30, (07 A)0,00,)0,[VB], U 3, (0%A)00,00,),[V A,
>, 1, ([VB],)? >, 1, ([VA])?

(18.7.20

(Inthese equations there is no sum qv@rThe form of thee(®) has some justification
if one views dot products as occurring in a space with the metfic= 9, /u,,
chosen to make zero values “far away”; $&le

on,
f
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18.7 Maximum Entropy Image Restoration 825

Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivially) solving three simultaneous
linear equations, as i§10.7, equation (10.7.4). The size of a si&fi is required
to be limited by the inequality

> (AT,)? /i, < (0.1100.5)U (18.7.21
1
Because the gradient directioRs4 and VB are separately available, it is possible
to combine the minimum search with a simultaneous adjustmensofas finally to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is due to
Cornwell and Evangi2]. Here, noting thaB3’s Hessian (second partial derivative)
matrix is diagonal, one asks whether there is a useful diagonal approximation t
A’s Hessian, namelgAT - A, If A, denotes the diagonal components of such an
approximation, then a useful step thwould be

1
A A (@)
(again compare equation 10.7.4). Even more extreme, one might seek an appro
imation with constant diagonal elements, = A, so that
1

:dny

T (129 10 WO U MMM/

&

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

A, = (VA + AVB) (18.7.22
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Ay, = ESVIH (VA + A\VB) (18.7.23 :
SinceA” - A has something of the nature of a doubly convolved point spread g
function, and since in real cases one often has a point spread function with a sharg &
central peak, even the more extreme of these approximations is often fruitful. OneZ
starts with a rough estimate df obtained from the4,,’s, e.g., §
A~ <Z[Aw]2> (18.7.24 a
An accurate value is not important, since in practices adjusted adaptively: IA f;?
is too large, then equation (18.7.23)’s steps will be too small (that is, larger steps ingr_
the same direction will produce even greater decreagein\i3). If A is too small, &
then attempted steps will land in an unfeasible region (negative valags) por will 8
resultin an increased + AB. There is an obvious similarity between the adjustment <
of A here and the Levenberg-Marquardt methodi1%.5; this should not be too g
surprising, since MEM is closely akin to the problem of nonlinear least-squares 2
fitting. Referencél2] also discusses how the value/®df+ \f”(u,) can be used to 2
adjust the Lagrange multiplier so as to converge to the desired valugf z
All practical MEM algorithms are found to require on the order of 30 to 50 %
iterations to converge. This convergence behavior is not now understood in any™ & 3

fundamental way.
“Bayesian” versus “Historic” Maximum Entropy

Several more recent developments in maximum entropy image restoration
go under the rubric “Bayesian” to distinguish them from the previous “historic”
methods. SeB3] for details and references.
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e Better priors: We already noted that the entropy functional (equation
18.7.13) is invariant under scrambling all pixels and has no notion of
smoothness. The so-called “intrinsic correlation function” (ICF) model
(Ref.[13], where it is called “New MaxEnt") is similar enough to the
entropy functional to allow similar algorithms, but it makes the values of

neighboring pixels correlated, enforcing smoothness.

o Better estimation of\: Above we chose\ to bring 2 into its expected
narrow statistical range d¥ & (2V)!/2. This in effect overestimateg®,
however, since some effective numbeasf parameters are being “fitted” in

doing the reconstruction. A Bayesian approach leads to a self-consistent

estimate of thisy and an objectively better choice far
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