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necessary. (For “unsticking” procedures, see[10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (18.5.21) as

û(k+1) = (1 − ελH) · û(k) + εAT · (b − A · û(k)) (18.5.27)

If the iteration is modified by the insertion of projection operators at each step

û(k+1) = (P1P2 · · · Pm)[(1 − ελH) · û(k) + εAT · (b − A · û(k))] (18.5.28)

(or, instead ofPi’s, theTi operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject to the desired nonlinear
deterministic constraints. See[7] for references to more sophisticated, and faster
converging, iterations along these lines.
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18.6 Backus-Gilbert Method

TheBackus-Gilbert method [1,2] (see, e.g.,[3] or [4] for summaries) differs from
other regularization methods in the nature of its functionalsA andB. ForB, the
method seeks to maximize thestability of the solutionû(x) rather than, in the first
instance, its smoothness. That is,

B ≡ Var[û(x)] (18.6.1)
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is used as a measure of how much the solutionû(x) varies as the data vary within
their measurement errors. Note that this variance is not the expected deviation of
û(x) from the trueu(x) — that will be constrained byA — but rather measures
the expected experiment-to-experiment scatter among estimatesû(x) if the whole
experiment were to be repeated many times.

ForA the Backus-Gilbert method looks at the relationship between the solution
û(x) and the true functionu(x), and seeks to make the mapping between these as
close to the identity map as possible in the limit of error-free data. The method is
linear, so the relationship betweenû(x) andu(x) can be written as

û(x) =
∫

δ̂(x, x′)u(x′)dx′ (18.6.2)

for some so-calledresolution function or averaging kernel δ̂(x, x′). The Backus-
Gilbert method seeks to minimize the width orspread of δ̂ (that is, maximize the
resolving power).A is chosen to be some positive measure of the spread.

While Backus-Gilbert’s philosophy is thus rather different from that of Phillips-
Twomey and related methods, in practice the differences between the methods are
less than one might think. Astable solution is almost inevitably bound to be
smooth: The wild, unstable oscillations that result from an unregularized solution
are always exquisitely sensitive to small changes in the data. Likewise, making
û(x) close tou(x) inevitably will bring error-free data into agreement with the
model. ThusA andB play roles closely analogous to their corresponding roles
in the previous two sections.

The principal advantage of the Backus-Gilbert formulation is that it gives good
control over just those properties that it seeks to measure, namely stability and
resolving power. Moreover, in the Backus-Gilbert method, the choice ofλ (playing
its usual role of compromise betweenA andB) is conventionally made, or at least
can easily be made,before any actual data are processed. One’s uneasiness at making
apost hoc, and therefore potentially subjectively biased, choice ofλ is thus removed.
Backus-Gilbert is often recommended as the method of choice for designing, and
predicting the performance of, experiments that require data inversion.

Let’s see how this all works. Starting with equation (18.4.5),

ci ≡ si + ni =
∫

ri(x)u(x)dx + ni (18.6.3)

and building in linearity from the start, we seek a set ofinverse response kernels
qi(x) such that

û(x) =
∑

i

qi(x)ci (18.6.4)

is the desired estimator ofu(x). It is useful to define the integrals of the response
kernels for each data point,

Ri ≡
∫

ri(x)dx (18.6.5)
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Substituting equation (18.6.4) into equation (18.6.3), and comparing with equation
(18.6.2), we see that

δ̂(x, x′) =
∑

i

qi(x)ri(x′) (18.6.6)

We can require this averaging kernel to have unit area at everyx, giving

1 =
∫

δ̂(x, x′)dx′ =
∑

i

qi(x)
∫

ri(x′)dx′ =
∑

i

qi(x)Ri ≡ q(x) · R (18.6.7)

whereq(x) andR are each vectors of lengthN , the number of measurements.
Standard propagation of errors, and equation (18.6.1), give

B = Var[û(x)] =
∑

i

∑
j

qi(x)Sijqj(x) = q(x) · S · q(x) (18.6.8)

whereSij is the covariance matrix (equation 18.4.6). If one can neglect off-diagonal
covariances (as when the errors on theci’s are independent), thenSij = δijσ

2
i

is diagonal.
We now need to define a measure of the width or spread ofδ̂(x, x′) at each

value ofx. While many choices are possible, Backus and Gilbert choose the second
moment of its square. This measure becomes the functionalA,

A ≡ w(x) =
∫

(x′ − x)2[δ̂(x, x′)]2dx′

=
∑

i

∑
j

qi(x)Wij(x)qj(x) ≡ q(x) · W(x) · q(x)
(18.6.9)

where we have here used equation (18.6.6) and defined thespread matrix W(x) by

Wij(x) ≡
∫

(x′ − x)2ri(x′)rj(x′)dx′ (18.6.10)

The functionsqi(x) are now determined by the minimization principle

minimize: A + λB = q(x) ·
[
W(x) + λS

]
· q(x) (18.6.11)

subject to the constraint (18.6.7) thatq(x) · R = 1.
The solution of equation (18.6.11) is

q(x) =
[W(x) + λS]−1 · R

R · [W(x) + λS]−1 · R
(18.6.12)

(Reference[4] gives an accessible proof.) For any particular data setc (set of
measurementsci), the solutionû(x) is thus

û(x) =
c · [W(x) + λS]−1 · R
R · [W(x) + λS]−1 · R

(18.6.13)
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(Don’t let this notation mislead you into inverting the full matrixW(x) + λS. You
only need to solve for somey the linear system(W(x) + λS) · y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variablex, soM does not come into play at all. One solves a different
N × N set of linear equations for each desired value ofx. By contrast, in (18.5.8),
one solves anM ×M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one chooseλ within the Backus-Gilbert scheme? As already
mentioned, you can (in some casesshould) make the choicebefore you see any actual
data. For a given trial value ofλ, and for a sequence ofx’s, use equation (18.6.12)
to calculateq(x); then use equation (18.6.6) to plot the resolution functionsδ̂(x, x′)
as a function ofx′. These plots will exhibit the amplitude with which different
underlying valuesx′ contribute to the point̂u(x) of your estimate. For the same
value ofλ, also plot the function

√
Var[û(x)] using equation (18.6.8). (You need an

estimate of your measurement covariance matrix for this.)
As you changeλ you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even chooseλ to be a
function ofx, λ = λ(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for eachx.) For
the chosen value or values ofλ, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.
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18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methodsbreak
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should


