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necessary. (For “unsticking” procedures, §8&) The uniqueness of the solution

is also not well understood, although for two-dimensional images of reasonable

complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into

iterative methods of linear regularization. In particular, rearranging terms somewhat,

we can write the iteration (18.5.21) as
0% = (1= eAH) -0 + AT (b —A-T) (18.5.27
If the iteration is modified by the insertion of projection operators at each step

QY = (PP o)1= eXH) - T + AT - (b—A-0M)]  (185.29

(or, instead ofP;’s, the7; operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
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to minimize the quadratic functional (18.5.6) subject to the desired nonlinear ®

deterministic constraints. S&& for references to more sophisticated, and faster

converging, iterations along these lines.
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18.6 Backus-Gilbert Method

TheBackus-Gilbert method [1.2] (see, e.g.[3] or [4] for summaries) differs from
other regularization methods in the nature of its functiondland 5. For B, the
method seeks to maximize tisbility of the solutionu(x) rather than, in the first
instance, its smoothness. That is,

B = Var[u(z)] (18.6.))
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is used as a measure of how much the solution) varies as the data vary within
their measurement errors. Note that this variance is not the expected deviation of
u(x) from the trueu(z) — that will be constrained byl — but rather measures
the expected experiment-to-experiment scatter among estimatesf the whole
experiment were to be repeated many times.

For A the Backus-Gilbert method looks at the relationship between the solution
u(x) and the true functiom(z), and seeks to make the mapping between these as
close to the identity map as possible in the limit of error-free data. The method i<
linear, so the relationship betwe@fr) andu(z) can be written as

MW/ duq

u(x) = /g(x,x’)u(x')d:v' (18.6.2

for some so-calledesolution function or averaging kernel g(a:, x’). The Backus-

Gilbert method seeks to minimize the width saread of 5 (that is, maximize the
resolving power).A is chosen to be some positive measure of the spread.

While Backus-Gilbert’s philosophy is thus rather different from that of Phillips-
Twomey and related methods, in practice the differences between the methods a
less than one might think. Atable solution is almost inevitably bound to be
smooth: The wild, unstable oscillations that result from an unregularized solution
are always exquisitely sensitive to small changes in the data. Likewise, making :

u(zx) close tou(z) inevitably will bring error-free data into agreement with the
model. ThusA and B play roles closely analogous to their corresponding roles
in the previous two sections.

The principal advantage of the Backus-Gilbert formulation is that it gives good
control over just those properties that it seeks to measure, namely stability an
resolving power. Moreover, in the Backus-Gilbert method, the choice(pfaying
its usual role of compromise betweghand) is conventionally made, or at least
can easily be madegforeany actual data are processed. One’s uneasiness at makin
apost hoc, and therefore potentially subjectively biased, choicg isfthus removed.
Backus-Gilbert is often recommended as the method of choice for designing, an
predicting the performance of, experiments that require data inversion.

Let's see how this all works. Starting with equation (18.4.5),
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Ci =8 +n; = /m(w)u(:v)da: +n; (18.6.3
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and building in linearity from the start, we seek a sefrofrse response kernels
gi(z) such that
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= Z qi(x)es (18.6.4

is the desired estimator af(x). It is useful to define the integrals of the response
kernels for each data point,

R, = /ri(x)d:v (18.6.5
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Substituting equation (18.6.4) into equation (18.6.3), and comparing with equation
(18.6.2), we see that

S(x,2') =Y qi(x)rilx) (18.6.9
We can require this averaging kernel to have unit area at eyegiving
1= /S(a:, 2 )dx' = Zqi(x)/ri(x/)d:c/ =Y (@R =q(z)-R (18.6.9

whereq(z) andR are each vectors of lengf, the number of measurements.
Standard propagation of errors, and equation (18.6.1), give

B =Varfa(z)] = 3 " ai(2)Sija(x) = d() - S- a(x) (18.6.8

whereS;; is the covariance matrix (equation 18.4.6). If one can neglect off-diagonal
covariances (as when the errors on ths are independent), thefi;; = d;;07
is diagonal.

We now need to define a measure of the width or spreaﬁ(;@jx’) at each
value ofz. While many choices are possible, Backus and Gilbert choose the secon
moment of its square. This measure becomes the functidnal

A=uw(z) = / (' — )23, o) Pda’

18.6.
= Z Z qi(2)Wij(z)gj(z) = q(z) - W(z) - () (186.9

where we have here used equation (18.6.6) and definegbitberl matrix W (z) by

Wij(x) = / (2 —2)?ri(a")ry(«")da! (18.6.10

The functionsy; (x) are now determined by the minimization principle
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minimize: A+ AB = q(z) - [W(z) + AS] - q(z) (18.6.11
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subject to the constraint (18.6.7) thgr) - R = 1.
The solution of equation (18.6.11) is
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W(z)+AS~ 'R
-[W(z) +A§"1-R
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qe) = = (18.6.12

(Referencé4] gives an accessible proof.) For any particular datacsé&et of
measurements;), the solutionu(x) is thus

¢ W(2)+ 5! R
UT) = R W@ T AS TR

(18.6.13
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(Don't let this notation mislead you into inverting the full maté¥(x) + AS. You
only need to solve for somg the linear systenfW (z) + AS) -y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have siz&, the number of measurements. There is no discretization of
the underlying variable, so M does not come into play at all. One solves a different
N x N set of linear equations for each desired value.oBy contrast, in (18.5.8),
one solves aii/ x M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitabl
for other than one-dimensional problems.

How does one choosg within the Backus-Gilbert scheme? As already
mentioned, you can (in some casheuld) make the choicbeforeyou see any actual
data. For a given trial value of, and for a sequence afs, use equation (18.6.12)
to calculatey(z); then use equation (18.6.6) to plot the resolution functi@@s x')
as a function oft’. These plots will exhibit the amplitude with which different
underlying values:’ contribute to the pointi(x) of your estimate. For the same
value of), also plot the function /Var[u(z)] using equation (18.6.8). (You need an
estimate of your measurement covariance matrix for this.)

As you change\ you will see very explicitly the trade-off between resolution
and stability. Pick the value that meets your needs. You can even chdodee a
function ofz, A = A(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations forzeadkor
the chosen value or values &f you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processin
real data — you need to judge whether a particular feature, a spike or jump fo
example, is genuine, and/or is actually resolved. The Backus-Gilbert method ha
found particular success among geophysicists, who use it to obtain information abou
the structure of the Earth (e.qg., density run with depth) from seismic travel time data.
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18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methodsbreak
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should
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