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The single central idea in inverse theory is the prescription

minimize: A + λB (18.4.12)

for various values of0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value ofλ by one or another criterion, ranging
from fairly objective (e.g., makingχ2 = N ) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices ofA and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a finalλ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do witha priori expectation, or knowledge, of a solution, while
A has something to do witha posteriori knowledge. The constantλ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.
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18.5 Linear Regularization Methods

What we will call linear regularization is also called thePhillips-Twomey
method [1,2], theconstrained linear inversion method [3], themethod of regulariza-
tion [4], andTikhonov-Miller regularization [5-7]. (It probably has other names also,
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since it is so obviously a good idea.) In its simplest form, the method is an immediate
generalization of zeroth-order regularization (equation 18.4.11, above). As before,
the functionalA is taken to be theχ2 deviation, equation (18.4.9), but the functional
B is replaced by more sophisticated measures of smoothness that derive from first
or higher derivatives.

For example, suppose that youra priori belief is that a credibleu(x) is not too
different from a constant. Then a reasonable functional to minimize is

B ∝
∫

[û′(x)]2dx ∝
M−1∑
µ=1

[ûµ − ûµ+1]2 (18.5.1)

since it is nonnegative and equal to zero only whenû(x) is constant. Here
ûµ ≡ û(xµ), and the second equality (proportionality) assumes that thexµ’s are
uniformly spaced. We can write the second form ofB as

B = |B · û|2 = û · (BT · B) · û ≡ û · H · û (18.5.2)

whereû is the vector of componentŝuµ, µ = 1, . . . ,M , B is the (M − 1) × M
first difference matrix

B =


−1 1 0 0 0 0 0 · · · 0

0 −1 1 0 0 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 0 −1 1 0
0 · · · 0 0 0 0 0 −1 1

 (18.5.3)

and H is the M × M matrix

H = BT · B =



1 −1 0 0 0 0 0 · · · 0
−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 −1 2 −1 0
0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 1


(18.5.4)

Note thatB has one fewer row than column. It follows that the symmetricH
is degenerate; it has exactly one zero eigenvalue corresponding to thevalue of a
constant function, any one of which makesB exactly zero.

If, just as in §15.4, we write

Aiµ ≡ Riµ/σi bi ≡ ci/σi (18.5.5)

then, using equation (18.4.9), the minimization principle (18.4.12) is

minimize: A + λB = |A · û − b|2 + λû · H · û (18.5.6)

This can readily be reduced to a linear set ofnormal equations, just as in§15.4: The
componentŝuµ of the solution satisfy the set ofM equations inM unknowns,

∑
ρ

[(∑
i

AiµAiρ

)
+ λHµρ

]
ûρ =

∑
i

Aiµbi µ = 1, 2, . . . ,M (18.5.7)
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or, in vector notation,

(AT · A + λH) · û = AT · b (18.5.8)

Equations (18.5.7) or (18.5.8) can be solved by the standard techniques of
Chapter 2, e.g.,LU decomposition. The usual warnings about normal equations
being ill-conditioned do not apply, since the whole purpose of theλ term is to cure
that same ill-conditioning. Note, however, that theλ termby itself is ill-conditioned,
since it does not select a preferred constant value. You hope your data can at
least do that!

Although inversion of the matrix(AT ·A +λH) is not generally the best way to
solve forû, let us digress to write the solution to equation (18.5.8) schematically as

û =
(

1
AT · A + λH

· AT · A
)

A−1 · b (schematic only!) (18.5.9)

where the identity matrix in the formA · A−1 has been inserted. This is schematic
not only because the matrix inverse is fancifully written as a denominator, but
also because, in general, the inverse matrixA−1 does not exist. However, it is
illuminating to compare equation (18.5.9) with equation (13.3.6) for optimal or
Wiener filtering, or with equation (13.6.6) for general linear prediction. One sees
that AT · A plays the role ofS2, the signal power or autocorrelation, whileλH
plays the role ofN 2, the noise power or autocorrelation. The term in parentheses
in equation (18.5.9) is something like an optimal filter, whose effect is to pass the
ill-posed inverseA−1 · b through unmodified whenAT · A is sufficiently large, but
to suppress it whenAT · A is small.

The above choices ofB andH are only the simplest in an obvious sequence of
derivatives. If youra priori belief is that alinear function is a good approximation
to u(x), then minimize

B ∝
∫

[û′′(x)]2dx ∝
M−2∑
µ=1

[−ûµ + 2ûµ+1 − ûµ+2]2 (18.5.10)

implying

B =


−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 −1 2 −1 0
0 · · · 0 0 0 0 −1 2 −1

 (18.5.11)

and

H = BT · B =



1 −2 1 0 0 0 0 · · · 0
−2 5 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0
0 1 −4 6 −4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 −4 6 −4 1 0
0 · · · 0 0 1 −4 6 −4 1
0 · · · 0 0 0 1 −4 5 −2
0 · · · 0 0 0 0 1 −2 1


(18.5.12)
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ThisH has two zero eigenvalues, corresponding to the two undetermined parameters
of a linear function.

If your a priori belief is that aquadratic function is preferable, then minimize

B ∝
∫

[û′′′(x)]2dx ∝
M−3∑
µ=1

[−ûµ + 3ûµ+1 − 3ûµ+2 + ûµ+3]2 (18.5.13)

with

B =


−1 3 −3 1 0 0 0 · · · 0

0 −1 3 −3 1 0 0 · · · 0
...

. . .
...

0 · · · 0 0 −1 3 −3 1 0
0 · · · 0 0 0 −1 3 −3 1

 (18.5.14)

and now

H =



1 −3 3 −1 0 0 0 0 0 · · · 0
−3 10 −12 6 −1 0 0 0 0 · · · 0

3 −12 19 −15 6 −1 0 0 0 · · · 0
−1 6 −15 20 −15 6 −1 0 0 · · · 0

0 −1 6 −15 20 −15 6 −1 0 · · · 0
...

. . .
...

0 · · · 0 −1 6 −15 20 −15 6 −1 0
0 · · · 0 0 −1 6 −15 20 −15 6 −1
0 · · · 0 0 0 −1 6 −15 19 −12 3
0 · · · 0 0 0 0 −1 6 −12 10 −3
0 · · · 0 0 0 0 0 −1 3 −3 1


(18.5.15)

(We’ll leave the calculation of cubics and above to the compulsive reader.)
Notice that you can regularize with “closeness to a differential equation,” if

you want. Just pickB to be the appropriate sum of finite-difference operators (the
coefficients can depend onx), and calculateH = BT · B. You don’t need to know
the values of your boundary conditions, sinceB can have fewer rows than columns,
as above; hopefully, your data will determine them. Of course, if you do know some
boundary conditions, you can build these intoB too.

With all the proportionality signs above, you may have lost track of what actual
value ofλ to try first. A simple trick for at least getting “on the map” is to first try

λ = Tr(AT · A)/Tr(H) (18.5.16)

where Tr is the trace of the matrix (sum of diagonal components). This choice
will tend to make the two parts of the minimization have comparable weights, and
you can adjust from there.

As for what is the “correct” value ofλ, an objective criterion, if you know
your errorsσi with reasonable accuracy, is to makeχ2 (that is,|A · û − b|2) equal
to N , the number of measurements. We remarked above on the twin acceptable
choicesN ± (2N)1/2. A subjective criterion is to pick any value that you like in the



812 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

range0 < λ < ∞, depending on your relative degree of belief in thea priori anda
posteriori evidence. (Yes, people actually do that. Don’t blame us.)

Two-Dimensional Problems and Iterative Methods

Up to now our notation has been indicative of a one-dimensional problem,
finding û(x) or ûµ = û(xµ). However, all of the discussion easily generalizes to the
problem of estimating a two-dimensional set of unknownsûµκ, µ = 1, . . . ,M, κ =
1, . . . ,K, corresponding, say, to the pixel intensities of a measured image. In this
case, equation (18.5.8) is still the one we want to solve.

In image processing, it is usual to have the same number of input pixels in a
measured “raw” or “dirty” image as desired “clean” pixels in the processed output
image, so the matricesR andA (equation 18.5.5) are square and of sizeMK×MK.
A is typically much too large to represent as a full matrix, but often it is either (i)
sparse, with coefficients blurring an underlying pixel(i, j) only into measurements
(i±few, j±few), or (ii) translationally invariant, so thatA(i,j)(µ,ν) = A(i−µ, j−ν).
Both of these situations lead to tractable problems.

In the case of translational invariance, fast Fourier transforms (FFTs) are the
obvious method of choice. The general linear relation between underlying function
and measured values (18.4.7) now becomes a discrete convolution like equation
(13.1.1). Ifk denotes a two-dimensional wave-vector, then the two-dimensional FFT
takes us back and forth between the transform pairs

A(i−µ, j− ν) ⇐⇒ Ã(k) b(i,j) ⇐⇒ b̃(k) û(i,j) ⇐⇒ ũ(k) (18.5.17)

We also need a regularization or smoothing operatorB and the derivedH = B T · B.
One popular choice forB is the five-point finite-difference approximation of the
Laplacian operator, that is, the difference between the value of each point and the
average of its four Cartesian neighbors. In Fourier space, this choice implies,

B̃(k) ∝ sin2(πk1/M) sin2(πk2/K)

H̃(k) ∝ sin4(πk1/M) sin4(πk2/K)
(18.5.18)

In Fourier space, equation (18.5.7) is merely algebraic, with solution

ũ(k) =
Ã*(k)̃b(k)

|Ã(k)|2 + λH̃(k)
(18.5.19)

where asterisk denotes complex conjugation. You can make use of the FFT routines
for real data in§12.5.

Turn now to the case whereA is not translationally invariant. Direct solution
of (18.5.8) is now hopeless, since the matrixA is just too large. We need some
kind of iterative scheme.

One way to proceed is to use the full machinery of the conjugate gradient
method in§10.6 to find the minimum ofA + λB, equation (18.5.6). Of the various
methods in Chapter 10, conjugate gradient is the unique best choice because (i)
it does not require storage of a Hessian matrix, which would be infeasible here,
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and (ii) it does exploit gradient information, which we can readily compute: The
gradient of equation (18.5.6) is

∇(A + λB) = 2[(AT · A + λH) · û − AT · b] (18.5.20)

(cf. 18.5.8). Evaluation of both the function and the gradient should of course take
advantage of the sparsity ofA, for example via the routinessprsax andsprstx
in §2.7. We will discuss the conjugate gradient technique further in§18.7, in the
context of the (nonlinear) maximum entropy method. Some of that discussion can
apply here as well.

The conjugate gradient method notwithstanding, application of the unsophis-
ticated steepest descent method (see§10.6) can sometimes produce useful results,
particularly when combined with projections onto convex sets (see below). If the
solution afterk iterations is denoted̂u(k), then afterk + 1 iterations we have

û(k+1) = [1 − ε(AT · A + λH)] · û(k) + εAT · b (18.5.21)

Hereε is a parameter that dictates how far to move in the downhill gradient direction.
The method converges whenε is small enough, in particular satisfying

0 < ε <
2

max eigenvalue(AT · A + λH)
(18.5.22)

There exist complicated schemes for finding optimal values or sequences forε,
see[7]; or, one can adopt an experimental approach, evaluating (18.5.6) to be sure
that downhill steps are in fact being taken.

In those image processing problems where the final measure of success is
somewhat subjective (e.g., “how good does the picture look?”), iteration (18.5.21)
sometimes produces significantly improved images long before convergence is
achieved. This probably accounts for much of its use, since its mathematical
convergence is extremely slow. In fact, (18.5.21) can be used withH = 0, in which
case the solution is not regularized at all, and full convergence would be disastrous!
This is calledVan Cittert’s method and goes back to the 1930s. A number of
iterations the order of 1000 is not uncommon[7].

Deterministic Constraints: Projections onto Convex Sets

A set of possible underlying functions (or images){ û} is said to beconvex if,
for any two elementŝua andûb in the set, all the linearly interpolated combinations

(1 − η)ûa + ηûb 0 ≤ η ≤ 1 (18.5.23)

are also in the set. Manydeterministic constraints that one might want to impose on
the solution̂u to an inverse problem in fact define convex sets, for example:

• positivity
• compact support (i.e., zero value outside of a certain region)
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• known bounds (i.e.,uL(x) ≤ û(x) ≤ uU (x) for specified functionsuL

and uU ).
(In this last case, the bounds might be related to an initial estimate and its error bars,
e.g., û0(x) ± γσ(x), whereγ is of order 1 or 2.) Notice that these, and similar,
constraints can be either in the image space, or in the Fourier transform space, or (in
fact) in the space of any linear transformation ofû.

If Ci is a convex set, thenPi is called anonexpansive projection operator onto
that set if (i)Pi leaves unchanged anŷu already inCi, and (ii)Pi maps anŷu outside
Ci to the closest element ofCi, in the sense that

|Piû − û| ≤ |ûa − û| for all ûa in Ci (18.5.24)

While this definition sounds complicated, examples are very simple: A nonexpansive
projection onto the set of positivêu’s is “set all negative components of̂u equal
to zero.” A nonexpansive projection onto the set ofû(x)’s bounded byu L(x) ≤
û(x) ≤ uU (x) is “set all values less than the lower bound equal to that bound, and
set all values greater than the upper bound equal tothat bound.” A nonexpansive
projection onto functions with compact support is “zero the values outside of the
region of support.”

The usefulness of these definitions is the following remarkable theorem: LetC
be the intersection ofm convex setsC1, C2, . . . , Cm. Then the iteration

û(k+1) = (P1P2 · · · Pm)û(k) (18.5.25)

will converge toC from all starting points, ask → ∞. Also, if C is empty (there
is no intersection), then the iteration will have no limit point. Application of this
theorem is called themethod of projections onto convex sets or sometimesPOCS [7].

A generalization of the POCS theorem is that thePi’s can be replaced by
a set ofTi’s,

Ti ≡ 1 + βi(Pi − 1) 0 < βi < 2 (18.5.26)

A well-chosen set ofβi’s can accelerate the convergence to the intersection setC.
Some inverse problems can be completely solved by iteration (18.5.25) alone!

For example, a problem that occurs in both astronomical imaging and X-ray
diffraction work is to recover an image given only themodulus of its Fourier
transform (equivalent to its power spectrum or autocorrelation) and not thephase.
Here three convex sets can be utilized: the set of all images whose Fourier transform
has the specified modulus to within specified error bounds; the set of all positive
images; and the set of all images with zero intensity outside of some specified region.
In this case the POCS iteration (18.5.25) cycles among these three, imposing each
constraint in turn; FFTs are used to get in and out of Fourier space each time the
Fourier constraint is imposed.

The specific application of POCS to constraints alternately in the spatial and
Fourier domains is also known as theGerchberg-Saxton algorithm [8]. While this
algorithm is non-expansive, and is frequently convergent in practice, it has not been
proved to converge in all cases[9]. In the phase-retrieval problem mentioned above,
the algorithm often “gets stuck” on a plateau for many iterations before making
sudden, dramatic improvements. As many as104 to 105 iterations are sometimes
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necessary. (For “unsticking” procedures, see[10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (18.5.21) as

û(k+1) = (1 − ελH) · û(k) + εAT · (b − A · û(k)) (18.5.27)

If the iteration is modified by the insertion of projection operators at each step

û(k+1) = (P1P2 · · · Pm)[(1 − ελH) · û(k) + εAT · (b − A · û(k))] (18.5.28)

(or, instead ofPi’s, theTi operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject to the desired nonlinear
deterministic constraints. See[7] for references to more sophisticated, and faster
converging, iterations along these lines.
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18.6 Backus-Gilbert Method

TheBackus-Gilbert method [1,2] (see, e.g.,[3] or [4] for summaries) differs from
other regularization methods in the nature of its functionalsA andB. ForB, the
method seeks to maximize thestability of the solutionû(x) rather than, in the first
instance, its smoothness. That is,

B ≡ Var[û(x)] (18.6.1)


