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The single central idea in inverse theory is the prescription

minimize: A+ AB (18.4.12

for various values of) < A < oo along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value\dfy one or another criterion, ranging
from fairly objective (e.g., making2 = N) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choice$ afd

B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, a
to their recommended method for selecting a fikadnd as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that ¢
B has something to do with priori expectation, or knowledge, of a solution, while
A has something to do with posteriori knowledge. The constant adjudicates a
delicate compromise between the two. Some inverse methods have acquired a mo
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.
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18.5 Linear Regularization Methods

What we will call linear regularization is also called thePhillips-Twomey
method [1,2], the constrained linear inversion method [3], the method of regulariza-
tion [4], andTikhonov-Miller regularization [5-7]. (It probably has other names also,
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18.5 Linear Regularization Methods 809

since it is so obviously a good idea.) In its simplest form, the method is an immediate
generalization of zeroth-order regularization (equation 18.4.11, above). As before,

the functionalA is taken to be thg? deviation, equation (18.4.9), but the functional

B is replaced by more sophisticated measures of smoothness that derive from first

or higher derivatives.
For example, suppose that yaupriori belief is that a credible(z) is not too
different from a constant. Then a reasonable functional to minimize is

M-1
B /[ﬂ/(:c)]Qd:c o Y [y — U] (18.5.1)

pn=1

since it is nonnegative and equal to zero only whgn) is constant. Here
u, = u(z,), and the second equality (proportionality) assumes thatrifie are
uniformly spaced. We can write the second formibas

B=|B-U*=0-(B"-B)-U=0-H-U (18.5.9

wherel is the vector of components,, p =1,...,M, Bisthe(M — 1) x M
first difference matrix

-1 1 0 0 0 0 0o --- 0
0 -1 1 0 0 0 0 0
B=| : : (18.5.3
0o - 0 0 0 0 -1 1 0
0 0 0 0 0 0 -1 1
andH is the M x M matrix
1 -1 0 0 0 0 o --- 0
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 o --- 0
H=B".B= : : (18.5.4
0o --- 0 0 0 -1 2 -1 0
0o --- 0 0 0 0 -1 2 -1
0o --- 0 0 0 0 0 -1 1

Note thatB has one fewer row than column. It follows that the symmettic
is degenerate; it has exactly one zero eigenvalue corresponding taltieeof a
constant function, any one of which makBsexactly zero.

If, just as in§15.4, we write

Aiu = Ri;t/ai b; = Ci/Uz‘ (1853
then, using equation (18.4.9), the minimization principle (18.4.12) is
minimize: A+ M3 =|A-U—Db|?+\U-H-U (18.5.6

This can readily be reduced to a linear sehafmal equations, just as in§15.4: The
components:,, of the solution satisfy the set aff equations in\/ unknowns,

>

p

(Z AWAZ-,)) - )\HM)] U= Aiubi  p=12,...,M (185.7

2

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



810 Chapter 18.  Integral Equations and Inverse Theory

or, in vector notation,
(AT A+ MH)-G=A" Db (18.5.8

Equations (18.5.7) or (18.5.8) can be solved by the standard techniques of
Chapter 2, e.g.LU decomposition. The usual warnings about normal equations
being ill-conditioned do not apply, since the whole purpose ofXlierm is to cure
that same ill-conditioning. Note, however, that theermby itself is ill-conditioned,
since it does not select a preferred constant value. You hope your data can
least dothat!

Although inversion of the matrigA ™ - A + AH) is not generally the best way to
solve ford, let us digress to write the solution to equation (18.5.8) schematically as

g (1 AT -1, i 1
u (AT AT A A) A b (schematic only!) (18.5.9
where the identity matrix in the forrA - A~! has been inserted. This is schematic
not only because the matrix inverse is fancifully written as a denominator, but
also because, in general, the inverse ma#ix' does not exist. However, it is
illuminating to compare equation (18.5.9) with equation (13.3.6) for optimal or
Wiener filtering, or with equation (13.6.6) for general linear prediction. One sees
that A7 - A plays the role ofS2, the signal power or autocorrelation, whikH
plays the role of\V2, the noise power or autocorrelation. The term in parentheses 2
in equation (18.5.9) is something like an optimal filter, whose effect is to pass the2
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ill-posed inverseA ~! - b through unmodified wheA™ - A is sufficiently large, but E
to suppress it whel” - A is small. 8
The above choices @& andH are only the simplest in an obvious sequence of §
derivatives. If youra priori belief is that dinear function is a good approximation g
to u(x), then minimize s
M-—2 §
B / [@"(2)2dn ¢ 3 (= + 2t — Bpyal? (18519 &
pn=1 3
. . ®
implying g
-1 2 -1 0 0 0 0 0 S
0 -1 2 -1 0 0 0 0 IS
B=| : : (18.5.1) g
0 0 0 0 -1 2 -1 0 g
0 o 0 0 0 -1 2 -1 °
o
and =
>
1 -2 1 0 0 0 0o --- 0 3
-2 5 -4 1 0 0 0 -- 0 g

1 -4 6 -4 1 0 0 -- 0

0 1 —4 6 —4 1 0o --- 0

H=BT.B= : : (18.5.12

0 0 1 —4 6 —4 1 0

0 0 0 1 —4 6 —4 1

0 o o 0 1 -4 5 =2

0 0 0 0

0 1 -2 1
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ThisH has two zero eigenvalues, corresponding to the two undetermined parameters

of a linear function.

If your a priori belief is that aquadratic function is preferable, then minimize

M-3
B x / [@" (2))dz oc Y | [~y + 3tpg1 — Blpg2 + sl (18.5.13
=1 2339¢
=332
with Y
55258
-1 3 -3 1 0 0 0 8523
328 ®3
0 -1 3 -3 0 0 0 sz
. . = ©C
B= : (18.5.14 26382
0 0 0 -1 3 -3 1 0 o222
0 0 0 -1 3 -3 1 58857
Ne 280
and now K2
» o
28380
1 -3 3 -1 0 0 0 0 0 0 83232
-3 10 -12 6 -1 0 0 0 0 0 »852
3Sgo I
3 —-12 19 -15 6 -1 0 0 0 0 2Egalm
-1 6 -15 20 -15 6 -1 0 0 0 5-8%3%
-1 6 —15 20 —15 6 -1 0 0 %ggég
H= g : 22538
0 5 = n =
0 - 0 -1 6 -15 2 -15 6 -1 0 25582
o - 0 0 -1 6 —-15 20 -15 6 -1 $%232
a5
0o - 0 0 0 -1 6 —-15 19 -12 3 54528
o o o0
o -- 0 0 0 0o -1 6 —12 10 -3 20875
o - 0 O0 O O0 0 -1 3 -3 1 £8385
(18.5.19 225505
(We'll leave the calculation of cubics and above to the compulsive reader.) g ‘i T g@
Notice that you can regularize with “closeness to a differential equation,” if g& 32 z
you want. Just piclB to be the appropriate sum of finite-difference operators (the 2 gé 34
coefficients can depend ar), and calculatéd = B” - B. You don’t need to know §'§ S §_,g
the values of your boundary conditions, sif&ean have fewer rows than columns, & g 5 )
as above; hopefully, your data will determine them. Of course, if you do know some = 53 %é
.y . . c 90 ¢y
boundary conditions, you can build these if&@doo. Zomw
With all the proportionality signs above, you may have lost track of what actual & %E %
value of\ to try first. A simple trick for at least getting “on the map” is to first try ggé’%
><a
T EEE
A=Tr(A* -A)/Tr(H) (18.5.1§ %% 3
where Tr is the trace of the matrix (sum of diagonal components). This choice &3

will tend to make the two parts of the minimization have comparable weights, and
you can adjust from there.

As for what is the “correct” value of\, an objective criterion, if you know
your errorso; with reasonable accuracy, is to make (that is,|A - U — b|?) equal
to N, the number of measurements. We remarked above on the twin acceptable
choicesN + (2V)'/2. A subjective criterion is to pick any value that you like in the
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range0 < A < oo, depending on your relative degree of belief in ¢hariori anda
posteriori evidence. (Yes, people actually do that. Don't blame us.)

Two-Dimensional Problems and lterative Methods

Up to now our notation has been indicative of a one-dimensional problem,

findingu(x) oru, = u(x,). However, all of the discussion easily generalizes to the 5
problem of estimating a two-dimensional set of unknowng, p=1,..., M, k = g
1,..., K, corresponding, say, to the pixel intensities of a measured image. In this:

case, equation (18.5.8) is still the one we want to solve.

In image processing, it is usual to have the same number of input pixels in a
measured “raw” or “dirty” image as desired “clean” pixels in the processed output
image, so the matricé® andA (equation 18.5.5) are square and of §iZé& x M K.

A is typically much too large to represent as a full matrix, but often it is either (i)
sparse, with coefficients blurring an underlying pik&lj) only into measurements
(i+few, j+few), or (i) translationally invariant, so that ; j(,...) = A(i—u,j—v).
Both of these situations lead to tractable problems.

In the case of translational invariance, fast Fourier transforms (FFTs) are thed
obvious method of choice. The general linear relation between underlying function3,
and measured values (18.4.7) now becomes a discrete convolution like equatiod
(13.1.1). Ifk denotes a two-dimensional wave-vector, then the two-dimensional FFT &
takes us back and forth between the transform pairs

0 Woo'Iu

) £2v/-2/8-008-T €2 J
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W

Ali—p,j—v) <= AK)  bu, < bk) Tu,; < (k) (185.17

We also need a regularization or smoothing opertand the derivetH =B 7 - B.

One popular choice foB is the five-point finite-difference approximation of the
Laplacian operator, that is, the difference between the value of each point and th
average of its four Cartesian neighbors. In Fourier space, this choice implies,

B(K) o sin®(mky /M) sin®(wky / K)
- (18.5.18
H(K) o sin®(mky /M) sin’ (7ky / K)
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In Fourier space, equation (18.5.7) is merely algebraic, with solution

A*(k)b(k)

[A(K)[? + AH (k)

(18.5.19
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where asterisk denotes complex conjugation. You can make use of the FFT routine
for real data in§12.5.

Turn now to the case where is not translationally invariant. Direct solution
of (18.5.8) is now hopeless, since the matixs just too large. We need some
kind of iterative scheme.

One way to proceed is to use the full machinery of the conjugate gradient
method in§10.6 to find the minimum o4 + AB, equation (18.5.6). Of the various
methods in Chapter 10, conjugate gradient is the unique best choice because (i)
it does not require storage of a Hessian matrix, which would be infeasible here,

‘(ea



18.5 Linear Regularization Methods 813

and (ii) it does exploit gradient information, which we can readily compute: The
gradient of equation (18.5.6) is

V(A+AB) =2[(AT -A+H) - — AT .| (18.5.20

(cf. 18.5.8). Evaluation of both the function and the gradient should of course take
advantage of the sparsity &f, for example via the routinesprsax andsprstx
in §2.7. We will discuss the conjugate gradient technique furthéili7, in the
context of the (nonlinear) maximum entropy method. Some of that discussion canz
apply here as well.

The conjugate gradient method notwithstanding, application of the unsophis-
ticated steepest descent method (§82.6) can sometimes produce useful results,
particularly when combined with projections onto convex sets (see below). If the g

solution afterk iterations is denoteﬂ(k), then afterk + 1 iterations we have

:dny

T €9 10 Woo" 7T MMM/

0* ) — 1= ¢(AT-A+H)] - T + AT b (18.5.2

Heree is a parameter that dictates how far to move in the downhill gradient direction.
The method converges whens small enough, in particular satisfying

2
0<e< 18.5.2
= max eigenvalugA” - A + \H) ( 2

There exist complicated schemes for finding optimal values or sequences for
sed7]; or, one can adopt an experimental approach, evaluating (18.5.6) to be sur
that downhill steps are in fact being taken.

In those image processing problems where the final measure of success i
somewhat subjective (e.g., “how good does the picture look?"), iteration (18.5.21)
sometimes produces significantly improved images long before convergence i
achieved. This probably accounts for much of its use, since its mathematica
convergence is extremely slow. In fact, (18.5.21) can be usedHvith0, in which
case the solution is not regularized at all, and full convergence would be disastrous&
This is calledVan Cittert’'s method and goes back to the 1930s. A number of
iterations the order of 1000 is not uncomm@h
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Deterministic Constraints: Projections onto Convex Sets

A set of possible underlying functions (or imagé€s)} is said to beconvex if,
for any two elementsi, andd, in the set, all the linearly interpolated combinations

‘(eauBwWwy YuUoN apisino) Bio'ab

(L=nla+nuy, 0<n<1 (18.5.23

are also in the set. Margeterministic constraints that one might want to impose on
the solutiond to an inverse problem in fact define convex sets, for example:

e positivity

e compact support (i.e., zero value outside of a certain region)
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814 Chapter 18.  Integral Equations and Inverse Theory

e known bounds (i.e.ur(x) < u(z) < uy(z) for specified functions,
and ugy).

(In this last case, the bounds might be related to an initial estimate and its error bars,
e.g.,uop(z) £ yo(z), wherey is of order 1 or 2.) Notice that these, and similar,
constraints can be either in the image space, or in the Fourier transform space, or (in
fact) in the space of any linear transformationinf

If C; is a convex set, theR,; is called anonexpansive projection operator onto
that set if (i)P; leaves unchanged ayalready inC;, and (i) P; maps anyi outside
C; to theclosest element ofC;, in the sense that

|P,U—1U| < U, —U] forallt,inC; (18.5.24

While this definition sounds complicated, examples are very simple: A nonexpansiv
projection onto the set of positive's is “set all negative components &f equal
to zero.” A nonexpansive projection onto the setugf)’s bounded byu 1, () <
u(z) < uy(z) is “set all values less than the lower bound equal to that bound, and
set all values greater than the upper bound equttiabbound.” A nonexpansive
projection onto functions with compact support is “zero the values outside of the
region of support.”

The usefulness of these definitions is the following remarkable theorend> Let
be the intersection af: convex sets”, Cs, ..., C,,. Then the iteration

-1Tes 10 woorummmyz:dny

o+ = (PP, - P, )0 (18.5.25

will converge toC from all starting points, ag — oco. Also, if C is empty (there
is no intersection), then the iteration will have no limit point. Application of this
theorem is called theethod of projections onto convex sets or sometime$OCS [7].

A generalization of the POCS theorem is that fAgs can be replaced by
a set of7;'s,

T, =1+ 51('P1 - 1) 0<fB; <2 (18.5.26

A well-chosen set off;’s can accelerate the convergence to the intersectiofi.set

Some inverse problems can be completely solved by iteration (18.5.25) alone

For example, a problem that occurs in both astronomical imaging and X-ray
diffraction work is to recover an image given only thaodulus of its Fourier
transform (equivalent to its power spectrum or autocorrelation) and nqihémse.
Here three convex sets can be utilized: the set of all images whose Fourier transfor
has the specified modulus to within specified error bounds; the set of all positive
images; and the set of all images with zero intensity outside of some specified region:
In this case the POCS iteration (18.5.25) cycles among these three, imposing ea
constraint in turn; FFTs are used to get in and out of Fourier space each time th
Fourier constraint is imposed.

The specific application of POCS to constraints alternately in the spatial and
Fourier domains is also known as tferchberg-Saxton algorithm([8]. While this
algorithm is non-expansive, and is frequently convergent in practice, it has not been
proved to converge in all caség. In the phase-retrieval problem mentioned above,
the algorithm often “gets stuck” on a plateau for many iterations before making
sudden, dramatic improvements. As manyla$ to 10° iterations are sometimes
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18.6 Backus-Gilbert Method 815

necessary. (For “unsticking” procedures, §8&) The uniqueness of the solution

is also not well understood, although for two-dimensional images of reasonable

complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into

iterative methods of linear regularization. In particular, rearranging terms somewhat,

we can write the iteration (18.5.21) as
0% = (1= eAH) -0 + AT (b —A-T) (18.5.27
If the iteration is modified by the insertion of projection operators at each step

QY = (PP o)1= eXH) - T + AT - (b—A-0M)]  (185.29

(or, instead ofP;’s, the7; operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge

008-T |29 10 WO Ju*mmm//:dny

T
©

to minimize the quadratic functional (18.5.6) subject to the desired nonlinear ®

deterministic constraints. S&& for references to more sophisticated, and faster

converging, iterations along these lines.
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18.6 Backus-Gilbert Method

TheBackus-Gilbert method [1.2] (see, e.g.[3] or [4] for summaries) differs from
other regularization methods in the nature of its functiondland 5. For B, the
method seeks to maximize tisbility of the solutionu(x) rather than, in the first
instance, its smoothness. That is,

B = Var[u(z)] (18.6.))

‘(eauBWyY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewa puas Jo ‘(Ajuo eauawy YUON) €2/
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD



