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special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel's smoothing and make problems well-conditioned.

In §518.4-18.7 we face up to the issues of inverse probleE3.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discus$d@®.ih0, are
applicable not only to data compression and signal processing, but can also be use
to transform some classes of integral equations into sparse linear problems that allo
fast solution. You may wish to revie$d3.10 as part of reading this chapter.

Some subjects, such agegro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations
see Brunnepl.

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.
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18.1 Fredholm Equations of the Second Kind

We desire a numerical solution f¢i(¢) in the equation
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b
f(t) = /\/ K(t,s)f(s)ds + g(t) (18.1.7
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The method we describe, a very basic one, is calledNgfsaom method. It requires
the choice of some approximatgadrature rule;

b N
/ y(s)ds = ijy(sj) (18.1.2
a =1

Here the sef{w;} are the weights of the quadrature rule, while fiigoints{s ;}
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s
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rules. We will see, however, that the solution method invol¢s/ 3) operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian
quadrature (e.g., Gauss-Legendre quadrafi#&). (For non-smooth or singular
kernels, see18.3.)

Delves and Mohameid] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, theys
concluded ‘. . the clear winner of this contest has been the Nystrom routingith
the N-point Gauss-Legendre rule. This routine is extremely simpleSuch results
are enough to make a numerical analyst weep.”

If we apply the quadrature rule (18.1.2) to equation (18.1.1), we get

dny

= /\ij (t,s;)f(s5) + g(t) (18.1.3

Evaluate equation (18.1.3) at the quadrature points:
= AZwJ (ti 7). (s5) + g(t:) (18.1.4

Let f; be the vectorf (¢;), g; the vectorg(t;), K;; the matrixX (¢;, s,), and define
Kij = Kijw, (18.1.5

Then in matrix notation equation (18.1.4) becomes
(1-XK)-f=g (18.1.6

This is a set ofN linear algebraic equations iV unknowns that can be solved
by standard triangular decomposition techniqu@s3) — that is where th& (N 3)
operations count comes in. The solution is usually well-conditioned, unléss
very close to an eigenvalue.

Having obtained the solution at the quadrature pojnt$, how do you get the
solution at some other poi? You donot simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s ke
observation was that you should use equation (18.1.3) as an interpolatory formula:
maintaining the accuracy of the solution.

We here give two routines for use with linear Fredholm equations of the second®
kind. The routinefred2 sets up equation (18.1.6) and then solves ity
decomposition with calls to the routin@sdcmp andlubksb. The Gauss-Legendre
guadrature is implemented by first getting the weights and abscissas with a call to
gauleg. Routinefred?2 requires that you provide an external function that returns
g(t) and another that returngl;;. It then returns the solutiofi at the quadrature
points. It also returns the quadrature points and weights. These are used by the
second routingredin to carry out the Nystrom interpolation of equation (18.1.3)
and return the value of at any point in the interval, b].
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#include "nrutil.h"

void fred2(int n, float a, float b, float t[], float f[], float wl[],
float (*g)(float), float (*ak)(float, float))

Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak are
user-supplied external functions that respectively return g(t) and AK (¢,s). The routine returns
arrays t[1..n] and f[1..n] containing the abscissas t; of the Gaussian quadrature and the
solution f at these abscissas. Also returned is the array w[1..n] of Gaussian weights for use
with the Nystrom interpolation routine fredin.

{
void gauleg(float x1, float x2, float x[], float w[], int n);
void lubksb(float **a, int n, int *indx, float b[]);
void ludcmp(float **a, int n, int *indx, float *d);
int i, j,*indx;
float d,**omk;
indx=ivector(1,n);
omk=matrix(1,n,1,n);
gauleg(a,b,t,w,n); Replace gauleg with another routine if not using
for (i=1;i<=n;i++) { Gauss-Legendre quadrature.
for (j=1;j<=n;j++) Form 1 — AK.
omk[i] [j1=(float) (i == j)-(xak) (t[i]l,t[j1)*w[jl;
flil=(xg) (t[i1);
}
ludcmp (omk,n, indx,&d) ; Solve linear equations.
lubksb(omk,n,indx,f);
free_matrix(omk,1,n,1,n);
free_ivector(indx,1,n);
}

float fredin(float x, int n, float a, float b, float t[], float f[],

float w[], float (xg)(float), float (*ak)(float, float))
Given arrays t[1..n] and w[1..n] containing the abscissas and weights of the Gaussian
quadrature, and given the solution array £ [1. .n] from fred2, this function returns the value of
f at x using the Nystrom interpolation formula. On input, a and b are the limits of integration,
and n is the number of points used in the Gaussian quadrature. g and ak are user-supplied
external functions that respectively return g(t) and AK (¢, s).

{
int i;
float sum=0.0;
for (i=1;i<=n;i++) sum += (*ak) (x,t[i])*w[il*f[i];
return (*g) (x)+sum;
}

@D 10 sx00q sadiday [eauawny Japio o] ‘pangiyoid Apois si ‘18Indwod 1aAlas Aue 0} (suo siyy Buipnjoul) saji a|qepeal

apIsino) 610 abplLgWeI @®AISSISN03IP 01 [fews puas Jo ‘(Ajuo eauswy YUON) £21/-2/8-008-T |[ed 0 WO Ju mmm//:dny
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

One disadvantage of a method based on Gaussian quadrature is that there is
simple way to obtain an estimate of the error in the result. The best practical metho
is to increaseV by 50%, say, and treat the difference between the two estimates as
conservative estimate of the error in the result obtained with the larger vahie of
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Turn now to solutions of the homogeneous equation. If we\set1/0 and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K- f=of (18.1.7

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the miitrix
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is symmetric. However, since the weights are not equal for most quadrature

rules, the matrixk (equation 18.1.5) is not symmetric. The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore the
symmetry if possible. Provided the weights are positive (which they are for Gaussian
quadrature), we can define the diagonal marix= diagw ;) and its square root,
D'/? = diag(,/w;). Then equation (18.1.7) becomes

K-D-f=of
Multiplying by D'/2, we get

(D1/2 K- D1/2) h=oh (18.1.9

whereh = D'/2 . f. Equation (18.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general giVeeigenvalues,
where N is the number of quadrature points used. For square-integrable kernels
these will provide good approximations to the lowdseigenvalues of the integral
equation. Kernels dfinite rank (also calleddegenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvalueghat are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you incr®ase improve
their accuracy. Some care is required here: A nondegenerate kernel can have
infinite number of eigenvalues that have an accumulation point at 0. You
distinguish the two cases by the behavior of the solution as you inciéaskyou
suspect a degenerate kernel, you will usually be able to solve the problem by analyti
techniques described in all the textbooks.
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18.2 Volterra Equations
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Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t):/ K(t,s)f(s)ds + g(t) (18.2.1

Most algorithms for Volterra equations march out from a, building up the solution
as they go. In this sense they resemble not only forward substitution (as discussed
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