760 Chapter 17. Two Point Boundary Value Problems

17.2 Shooting to a Fitting Point

The shooting method described§h7.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can't even get fromto =, without =
encountering some incalculable, or catastrophic, result. For example, the argume
of a square root might go negative, causing the numerical code to crash. Simpl
shooting would be stymied. .

A different, but related, case is where the endpoints are both singular pointsg

91U

o
=
-
=
)
n
@
@
o
=
@]
o]
m
n
o
>
5]
=
@

o
c
)
>
=

<
>
@
@
o
)
e
o
c
7
o
n

e,
@
Q
L
3
9]
o
=
o
o
)
—
o
5
—
@

Q
Q
]
>
@
>
%

,_..
=0
(0]
(9]
>

«Q
c
Q
=

e
o
>
=
(72
Q
>
Q

<
=
(@]
Q
%))

<
3
©
=4
o
=,
(@]
]
X
©
Q
S
0,
o
>
%)
—
(@]
-
]
x
Q
3
=2
(1)
=1
(%))
c
(@]
=
O
o]
0
D
(7]
=

feasible to integrate in the directi@way from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrate

a singular point, if only because one has not usually expended the same analyt
effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficultiessi®oting to a fitting point.
Instead of integrating from; to x2, we integrate first from:; to some point: ¢ that
is between z; andz,; and second from, (in the opposite direction) to ;.

If (as before) the number of boundary conditions imposedats n;, and the
number imposed at, is ns, then there arew, freely specifiable starting values at
1 andn; freely specifiable starting values at. (If you are confused by this, go
back t0§17.1.) We can therefore define an-vectorV ;) of starting parameters
atzy, and a prescriptiodoad1 (x1,v1,y) for mappingV () into ay that satisfies
the boundary conditions at,

yi(xl):yi(xl;V(l)l,...,V(l)nz) i:17...,N (172])

Likewise we can define am;-vectorV , of starting parameters at,, and a
prescriptionioad2 (x2,v2,y) for mappingV () into ay that satisfies the boundary
conditions atzs,

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

vi(w2) = yi(z2; Vioy, - - Viyny) i=1,...,N (17.2.2

We thus have a total oV freely adjustable parameters in the combination of
V(1) andV ;). The NV conditions that must be satisfied are that there be agreemen
in N components of atx ; between the values obtained integrating from one side
and from the other,

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

—

‘(eouBWY YUON 8pisino) H10 abpLqued @AISSISNo1081Ip 0] [rews puas Jo ‘(Ajuo eouswy YUON) S@v/.-2/.8-008-T
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

yi(If;V(l)) :yi(If;V(g)) 1= 1,...,N (1723

In some problems, th&/ matching conditions can be better described (physically,
mathematically, or numerically) by usirg different functions';, : = 1... N, each
possibly depending on th¥ componentg;. In those cases, (17.2.3) is replaced by

Ely(zs V)l = Fly(zs V) i=1,...,N (17.2.4

17.2 Shooting to a Fitting Point 761

In the program below, the user-supplied functiarore (xf,y,£) is supposed
to map an inputV-vectory into an outputN-vectorF. In most cases, you can
dummy this function as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in§17.1. Comparing closely with the routisoot of the previous section, you

should have no difficulty in understanding the following routit®otf. The main
differences in use are that you have to supply Hathd1 andload2. Also, in the
calling program you must supply initial guesses fdrf1..n2] andv2[1. .n1].
Once again a sample program illustrating shooting to a fitting point is givetir.

#include "nrutil.h"
#define EPS 1.0e-6

extern int nn2,nvar; Variables that you must define and set in your main pro-
extern float x1,x2,xf; gram.
int kmax,kount; Communicates with odeint.

float *xp,**yp,dxsav;

void shootf(int n, float v[], float f[])
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar ODEs at
x1 (x2) are generated from then2 (n1) coefficients v1 (v2), using the user-supplied routine
loadl (load2). The coefficients v1 and v2 should be stored in a single array v[1..n1+n2]
in the main program by statements of the form v1=v; and v2 = &v[n2];. The input param-
eter n = nl 4+ n2 = nvar. The routine integrates the ODEs to xf using the Runge-Kutta
method with tolerance EPS, initial stepsize hl, and minimum stepsize hmin. At xf it calls the
user-supplied routine score to evaluate the nvar functions £1 and £2 that ought to match
at xf. The differences f are returned on output. newt uses a globally convergent Newton's
method to adjust the values of v until the functions f are zero. The user-supplied routine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter 16).
The first set of global variables above receives its values from the main program so that shoot
can have the syntax required for it to be the argument vecfunc of newt. Set nn2 = n2 in
the main program.
{
void derivs(float x, float y[], float dydx[1);
void loadl(float x1, float vi[], float y[l);
void load2(float x2, float v2[], float y[1);
void odeint(float ystart[], int nvar, float x1, float x2,
float eps, float hl, float hmin, int *nok, int =*nbad,
void (*derivs) (float, float [], float []),
void (*rkgs) (float [], float [], int, float *, float, float,
float [], float *, float *, void (*)(float, float [], float [1)));
void rkgs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscall[l, float *hdid, float *hnext,
void (*derivs)(float, float [1, float []));
void score(float xf, float y[], float £[]);
int i,nbad,nok;
float hl,hmin=0.0,*f1,*f2,*y;

fi=vector(1,nvar);

f2=vector(1,nvar);

y=vector(1,nvar) ;

kmax=0;

h1=(x2-x1)/100.0;

loadl(x1,v,y); Path from x1 to xf with best trial values v1.
odeint (y,nvar,x1,xf,EPS,hl,hmin,&nok,&nbad,derivs,rkqgs) ;
score(xf,y,f1);

load2(x2,&v[nn2],y); Path from x2 to xf with best trial values v2.
odeint (y,nvar,x2,xf,EPS,hl,hmin,&nok,&nbad,derivs,rkqgs) ;
score(xf,y,f2);

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

762 Chapter 17. Two Point Boundary Value Problems

for (i=1;i<=n;i++) flil=f1[i]-f2[i];
free_vector(y,1,nvar);
free_vector(f2,1,nvar);
free_vector(fi,1,nvar);

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the -
solution being matched at each such point. For more detailslkee

CITED REFERENCES AND FURTHER READING:

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§67.3.5-7.3.6. [1]

17.3 Relaxation Methods

‘(Aluo eouBWY YUON) £21/-2/8-008-T €2 JO Wod Ju mmm//:dny

In relaxation methods we replace ODEs by approximafeite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example!
we could replace a general first-order differential equation

puss Jo

dy
2 = 9(@:y) (17.3.3
with an algebraic equation relating function values at two paints — 1:
Y —Ye-1 — @k —ax-1) g [3(@k +2e-1), 3(Uk +y-1)] =0 (17.3.2

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involdésoupled first-order ODEs
represented by FDEs on a meshMdf points, a solution consists of values fdr dependent
functions given at each of th& mesh points, oV x M variables in all. The relaxation
method determines the solution by startlng with a guess and improving it, iteratively. As the
iterations improve the solution, the result is saidédkax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi
dimensional Newton’s method, works well. The method produces a matrix equation that2
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a gener
matrix of size(M N) x (MN). SinceM N can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex:
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)—(17.0.3) where we had
N coupled first-order equations that satisfyboundary conditions at; andns, = N — n;
boundary conditions at.. We first define a mesh or grid by a setiof= 1,2, ..., M points
at which we supply values for the independent variable In particular,z; is the initial
boundary, andey, is the final boundary. We use the notatipnto refer to the entire set of

BpLgWEI@AISSISN0108IP 0] [rewWw?d

N opréino) Bio"a

Z(eouswy yd
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

