17.1 The Shooting Method 757

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some £
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphs@8.¢). It seeks to zera > functions
of no variables. The functions are obtained by integrat\glifferential equations
from z; to z». Let us see how this works:

At the starting pointz; there areN starting valueg; to be specified, but
subject tan; conditions. Therefore there amg = N — n; freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of
vectorV that lives in a vector space of dimension. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a function that
generates a complete setMfstarting valuey, satisfying the boundary conditions
atxy, from an arbitrary vector value &f in which there are no restrictions on the
component values. In other words, (17.0.2) converts to a prescription

Jurmmay/:dny

‘(Ajuo esusWY YUON) £Zi/a8/8-008-T I[e9 10 Wod

yl(gcl):yl(gcl,Vl,,Vnz) Z:1,,N (171])

Below, the function that implements (17.1.1) will be calleshd.

Notice that the components ®f might be exactly the values of certain “free”
components ofy, with the other components of determined by the boundary
conditions. Alternatively, the components\fmight parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations amongjgtheather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier t
“solve” the boundary relations for a consistent seyygé. It makes no difference
which way you go, as long as your vector spacd/&f generates (through 17.1.1)
all allowed starting vectory.

Given a particulaW, a particulaly(x 1) is thus generated. It can then be turned
into ay(z2) by integrating the ODEs t@, as an initial value problem (e.g., using
Chapter 16'sodeint). Now, atz,, let us define aliscrepancy vector F, also of
dimensionn,, whose components measure how far we are from satisfying the
boundary conditions at, (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

213841p O] |leWa puss Io

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON 3pISINo) ﬁJoeﬁpqueo@/Qaslsn
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Fk:BQk(fEQ,y) k’:l,...,ng (1713

As in the case oV, however, you can use any other convenient parametrization,
as long as your space &fs spans the space of possible discrepancies from the
desired boundary conditions, with all component$-aqual to zero if and only if

the boundary conditions aty are satisfied. Below, you will be asked to supply a
user-written functiorscore which uses (17.0.3) to convert ah-vector of ending
valuesy(z2) into anns-vector of discrepancies.

758 Chapter 17. Two Point Boundary Value Problems

Now, as far as Newton-Raphson is concerned, we are nearly in business. We

want to find a vector value o¥ that zeros the vector value & We do this

by invoking the globally convergent Newton’s method implemented in the routine
newt oOf §9.7. Recall that the heart of Newton’s method involves solving the set

of ny linear equations
J-6V=—F (17.1.3
and then adding the correction back,
vrew — yeld o5y (17.1.4

In (17.1.3), the Jacobian matrikhas components given by

or;
aV;

Jii = (17.1.5

It is not feasible to compute these partial derivatives analytically. Rather, eac

requires aseparate integration of theV ODEs, followed by the evaluation of

OF, F(Vi,....Vi+AV,..)=F(V,....Vj,..)
ov; AV

(17.1.9

This is done automatically for you in the routifiejac that comes witlmewt. The

only input tonewt that you have to provide is the routirecfunc that calculates
F by integrating the ODEs. Here is the appropriate routine, catet, that is

to be passed as the actual argumentiémt:

#include "nrutil.h"
#define EPS 1.0e-6

extern int nvar; Variables that you must define and set in your main pro-
extern float x1,x2; gram.
int kmax,kount; Communicates with odeint.

float *xp,**yp,dxsav;

void shoot(int n, float v[], float f[])
Routine for use with newt to solve a two point boundary value problem for nvar coupled ODEs
by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated from the n2
input coefficients v[1..n2], using the user-supplied routine load. The routine integrates the
ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize h1, and minimum
stepsize hmin. At x2 it calls the user-supplied routine score to evaluate the n2 functions
f[1..n2] that ought to be zero to satisfy the boundary conditions at x2. The functions f
are returned on output. newt uses a globally convergent Newton's method to adjust the values
of v until the functions £ are zero. The user-supplied routine derivs(x,y,dydx) supplies
derivative information to the ODE integrator (see Chapter 16). The first set of global variables
above receives its values from the main program so that shoot can have the syntax required
for it to be the argument vecfunc of newt.
{
void derivs(float x, float y[], float dydx[]);
void load(float x1, float v[], float y[1);
void odeint(float ystart[], int nvar, float x1, float x2,
float eps, float hl, float hmin, int *nok, int =*nbad,
void (*derivs)(float, float []1, float []),
void (*rkgs) (float [], float [], int, float *, float, float,

"(eouBWY YUON 3pIsINo) 610°aBpLgued@AI8sISno1oalip 0] [rews puas 1o ‘(Ajuo eauswy uuoﬁ*s £21/-2/8-008-T |[e2 10 Wod"uMmmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

17.1 The Shooting Method 759

float [], float *, float *, void (*)(float, float [], float []1)));
void rkgs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscall[l, float *hdid, float *hnext,
void (*derivs) (float, float [], float [1));
void score(float xf, float y[], float f[]);
int nbad,nok;
float hil,hmin=0.0,x*y;

y=vector(1,nvar) ;

kmax=0;

h1=(x2-x1)/100.0;

load(x1,v,y);

odeint (y,nvar,x1,x2,EPS,hl,hmin,&nok,&nbad,derivs,rkqgs) ;
score(x2,y,f);

free_vector(y,1,nvar);

For some problems the initial stepsi2zd” might depend sensitively upon the
initial conditions. It is straightforward to alt@rad to include a suggested stepsize
h1 as another output variable and feed ittthjac via a global variable.

A complete cycle of the shooting method thus requitgst 1 integrations of
the N coupled ODESs: one integration to evaluate the current degree of mismatch
andn,, for the partial derivatives. Each new cycle requires a new roundsof 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with initial value problems.

If the differential equations alénear, then only one complete cycle is required,
since (17.1.3)—-(17.1.4) should take us right to the solution. A second round can b
useful, however, in mopping up some (never all) of the roundoff error.

As given hereshoot uses the quality controlled Runge-Kutta method18.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just a
well be used.

You, the user, must supplhoot with: (i) a functionload(x1,v,y) which
calculates then-vectory[1..n] (satisfying the starting boundary conditions, of
course), given the freely specifiable variabless¢i . .n2] at the initial pointx1;

(i) a functionscore (x2,y,£) which calculates the discrepancy vectdn . .n2]
of the ending boundary conditions, given the vegtdt . .n] at the endpoink2;
(iii) a starting vector [1. .n2]; (iv) a functionderivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to skeot.

L,J
) £21£-2/8-008-T [[€2 10 WOD" AU mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

luoN
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

eOollBWY

CITED REFERENCES AND FURTHER READING:
Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

‘(eauBWwy YUoN apisino) Bio abpugqued@Aiasisnoloalip éf’uewa pua@Jo ‘(Aluo

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

760 Chapter 17. Two Point Boundary Value Problems

17.2 Shooting to a Fitting Point

The shooting method described§h7.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can't even get fromto =, without =
encountering some incalculable, or catastrophic, result. For example, the argume
of a square root might go negative, causing the numerical code to crash. Simpl
shooting would be stymied. .

A different, but related, case is where the endpoints are both singular pointsg

91U

o
=
-
=
)
n
@
@
o
=
@]
o]
m
n
o
>
5]
=
@

o
c
)
>
=

<
>
@
@
o
)
e
o
c
7
o
n

e,
@
Q
L
3
9]
o
=
o
o
)
—
o
5
—
@

Q
Q
]
>
@
>
%

,_..
=0
(0]
(9]
>

«Q
c
Q
=

e
o
>
=
(72
Q
>
Q

<
=
(@]
Q
%))

<
3
©
=4
o
=,
(@]
]
X
©
Q
S
0,
o
>
%)
—
(@]
-
]
x
Q
3
=2
(1)
=1
(%))
c
(@]
=
O
o]
0
D
(7]
=

feasible to integrate in the directi@way from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrate

a singular point, if only because one has not usually expended the same analyt
effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficultiessi®oting to a fitting point.
Instead of integrating from; to x2, we integrate first from:; to some point: ¢ that
is between z; andz,; and second from, (in the opposite direction) to ;.

If (as before) the number of boundary conditions imposedats n;, and the
number imposed at, is ns, then there arew, freely specifiable starting values at
1 andn; freely specifiable starting values at. (If you are confused by this, go
back t0§17.1.) We can therefore define an-vectorV ;) of starting parameters
atzy, and a prescriptiodoad1 (x1,v1,y) for mappingV () into ay that satisfies
the boundary conditions at,

yi(xl):yi(xl;V(l)l,...,V(l)nz) i:17...,N (172])

Likewise we can define am;-vectorV , of starting parameters at,, and a
prescriptionioad2 (x2,v2,y) for mappingV () into ay that satisfies the boundary
conditions atzs,

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

vi(w2) = yi(z2; Vioy, - - Viyny) i=1,...,N (17.2.2

We thus have a total oV freely adjustable parameters in the combination of
V(1) andV ;). The NV conditions that must be satisfied are that there be agreemen
in N components of atx ; between the values obtained integrating from one side
and from the other,

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

—

‘(eouBWY YUON 8pisino) H10 abpLqued @AISSISNo1081Ip 0] [rews puas Jo ‘(Ajuo eouswy YUON) S@v/.-2/.8-008-T
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

yi(If;V(l)) :yi(If;V(g)) 1= 1,...,N (1723

In some problems, th&/ matching conditions can be better described (physically,
mathematically, or numerically) by usirg different functions';, : = 1... N, each
possibly depending on th¥ componentg;. In those cases, (17.2.3) is replaced by

Ely(zs V)l = Fly(zs V) i=1,...,N (17.2.4

