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dy[jl=yest[jl;

else {
for (k=1;k<iest;k++)
fx[k+1]=x[iest-k]/xest;
for (j=1;j<=nv;j++) { Evaluate next diagonal in tableau.
v=d[j1[1];
d[j]1[1]=yy=c=yest[j]1;
for (k=2;k<=iest;k++) {

bil=fx[k]*v;
b=bl-c;
if (b) {
b=(c-v)/b;
ddy=c*b;
c=blxb;
} else Care needed to avoid division by 0.
ddy=v;

if (k != iest) v=d[j][k];
d[j] [k]=ddy;
yy += ddy;
}
dy[jl=ddy;
yz[il=yy;
}

free_vector(fx,1,iest);
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Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399-422. [2]
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535. [3]

16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in §16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

v' = f(z,y),  y(@o) =wo,  y'(w0) =20 (16.5.1)

As usual, y can denote a vector of values.
Soermer’s rule, dating back to 1907, has been a popular method for discretizing such
systems. With h = H/m we have

Y1 = yo + hlzo + 2hf(z0,y0)]
Yit1 — 2y + yr—1 = h° f (2o + kh, i), k=1,...,m—1 (16.5.2)
zm = (Ym — Ym—1)/h + 5hf(zo + H,ym)
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Here z,, isy’ (zo + H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities Ax = yr+1 — yr. Start with

Ao = hlzo + 3hf(z0,y0)]

(16.5.3)
y1 = yo + Ao
Then for k = 1,...,m — 1, set
Ap = Apor + B f(wo + kb, yi)
(16.5.4)
Y1 = Yr + Dg
Finally compute the derivative from
Zm = Am—1/h + %hf(:co + H,ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)—(16.5.5) contains only
even powers of h, and so the method isalogical candidate for extrapolationalaBulirsch-Stoer.
We replace mmid by the following routine stoerm:

#include "nrutil.h"

void stoerm(float y[], float d2y[], int nv, float xs, float htot, int nstep,

float yout[], void (*derivs)(float, float [], float [1))
Stoermer’s rule for integrating y” = f(x,y) for a system of n = nv/2 equations. On input
y[1..nv] contains y in its first n elements and y’ in its second n elements, all evaluated at
xs. d2y[1..nv] contains the right-hand side function f (also evaluated at xs) in its first n
elements. Its second n elements are not referenced. Also input is htot, the total step to be
taken, and nstep, the number of substeps to be used. The output is returned as yout [1. .nv],
with the same storage arrangement as y. derivs is the user-supplied routine that calculates f.
{

int i,n,neqns,nn;

float h,h2,halfh,x,*ytemp;

ytemp=vector(1,nv);

h=htot/nstep; Stepsize this trip.

halfh=0.5%h;

neqns=nv/2; Number of equations.

for (i=1;i<=neqgns;i++) { First step.
n=neqns+i;

ytemp [i]=y[i]+(ytemp [n]=h*(y [n]+halfh*d2y[i]));

x=xs+h;

(*derivs) (x,ytemp,yout) ; Use yout for temporary storage of derivatives.
h2=hxh;

for (nn=2;nn<=nstep;nn++) { General step.

for (i=1;i<=neqns;i++)

ytemp[i] += (ytemp[(n=neqns+i)] += h2*youtl[il);
x += h;
(*derivs) (x,ytemp,yout) ;

}

for (i=1;i<=neqns;i++) { Last step.
n=neqns+i;
yout [n]=ytemp [n] /h+halfh*yout [i];
yout [i]=ytemp[i];

}

free_vector(ytemp,1,nv);
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734 Chapter 16. Integration of Ordinary Differential Equations

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the second n elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n=1234,5,... (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations[1]:

u' = 998u + 1998v

, (16.6.1)
v’ = —999u — 1999v
with boundary conditions
u(0) =1 v(0)=0 (16.6.2)
By means of the transformation
u=2y—z v=—y+z (16.6.3)
we find the solution
w = 2T _ 1000z
(16.6.4)

V= —e~T 4 1000z

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e ~1°°°¢ term would require a stepsize h < 1/1000 for
the method to be stable (the reason for this is explained below). This is so even
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