Chapter 15. Modeling of Data

15.0 Introduction

Given a set of observations, one often wants to condense and summarize the
data by fitting it to a“model” that depends on adjustable parameters. Sometimesthe
model is simply a convenient class of functions, such as polynomials or Gaussians,
and the fit supplies the appropriate coefficients. Other times, the model’s parameters
come from some underlying theory that the data are supposed to satisfy; examples
are coefficients of rate equations in a complex network of chemical reactions, or
orbital elements of abinary star. Modeling can also be used as a kind of constrained
interpolation, where you want to extend a few data points into a continuousfunction,
but with some underlying idea of what that function should look like.

The basic approach in al cases is usualy the same: You choose or design a
figure-of-merit function (“merit function,” for short) that measures the agreement
between the data and the model with a particular choice of parameters. The merit
function is conventionally arranged so that small values represent close agreement.
The parameters of the model are then adjusted to achieve a minimum in the merit
function, yielding best-fit parameters. The adjustment process is thus a problem in
minimization in many dimensions. This optimization was the subject of Chapter 10;
however, there exist special, more efficient, methods that are specific to modeling,
and we will discuss these in this chapter.

Thereareimportant i ssuesthat go beyond the merefinding of best-fit parameters.
Data are generally not exact. They are subject to measurement errors (called noise
in the context of signal-processing). Thus, typical data never exactly fit the model
that is being used, even when that model is correct. We need the means to assess
whether or not the model is appropriate, that is, we need to test the goodness-of-fit
against some useful statistical standard.

Weusually also need to know the accuracy withwhich parametersare determined
by the data set. In other words, we need to know the likely errors of the best-fit
parameters.

Finally, it is not uncommon in fitting data to discover that the merit function
is not unimodal, with a single minimum. In some cases, we may be interested in
global rather than local questions. Not, “how good is thisfit?" but rather, “how sure
am | that there is not a very much better fit in some corner of parameter space?’
As we have seen in Chapter 10, especially §10.9, this kind of problem is generally
quite difficult to solve.

The important message we want to deliver is that fitting of parameters is not
the end-all of parameter estimation. To be genuinely useful, a fitting procedure
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should provide (i) parameters, (i) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit. When the third item suggests that the model
is an unlikely match to the data, then items (i) and (ii) are probably worthless.
Unfortunately, many practitioners of parameter estimation never proceed beyond
item (i). They deem afit acceptable if a graph of dataand model “looks good.” This
approach is known as chi-by-eye. Luckily, its practitioners get what they deserve.
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15.1 Least Squares as a Maximum Likelihood
Estimator

Supposethat we arefitting N datapoints (z;,v;) ¢ = 1,..., N, toamodel that
has M adjustable parameters a;, j = 1,..., M. The model predicts a functional
relationship between the measured independent and dependent variables,

y(@) = y(z;a1...anm) (15.1.1)

wherethe dependenceon the parametersisindicated explicitly on theright-hand side.
What, exactly, do we want to minimize to get fitted values for the a ;’'s? The
first thing that comes to mind is the familiar least-squares fit,

N
minimizeoveral Lo.apf Z[yl —y(xi;al ...aM)]2 (1512)
i=1

But where does this come from? What general principlesisit based on? The answer
to these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of x;'s and y;’s, we have the intuitive feeling that
some parameter sets a; ...ap; are very unlikely — those for which the model
function y(x) looks nothing like the data— while others may be very likely — those
that closely resemble the data. How can we quantify thisintuitive feeling? How can
we select fitted parameters that are “most likely” to be correct? It is not meaningful
to ask the question, “What is the probability that a particular set of fitted parameters
ay...ap iscorrect?” Thereason is that there is no statistical universe of models
from which the parameters are drawn. Thereis just one model, the correct one, and
a statistical universe of data sets that are drawn from it!
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