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ix=(int)x;
if (x == (float)ix) yylix] += y;
else {
ilo=LMIN(LMAX((long) (x-0.5*m+1.0),1) ,n-m+1);
ihi=ilo+m-1;
nden=nfac [m] ;
fac=x-ilo;
for (j=ilo+1;j<=ihi;j++) fac *= (x-j);
yy[ihi] += y*fac/(nden*(x-ihi));
for (j=ihi-1;j>=ilo;j--) {
nden=(nden/ (j+1-ilo))*(j-ihi);
yy[j]l += y*fac/(nden*(x-3));
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13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

b
I= / e h(t)dt , (13.9.1)
or the equivalent real and imaginary parts
b b
Ic:/ cos(wt)h(t)dt I, :/ sin(wt)h(t)dt , (13.9.2)

and one wantsto evaluate thisintegral for many different values of w. In cases of interest, h(t)
is often a smooth function, but it is not necessarily periodic in [a, b], nor does it necessarily
go to zero a a or b. While it seems intuitively obvious that the force majeure of the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, where M is a large integer, and define

A=

T b=atiA, hi=hit), j=0...M (13.9.3)

Notice that ho = h(a) and har = h(b), and that there are M + 1 values h;. We can
approximate the integral I by a sum,
M—-1
I~A Z hj exp(iwt;) (13.9.4)

§j=0
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13.9 Computing Fourier Integrals Using the FFT 585

which is at any rate first-order accurate. (If we centered the h;’s and the ¢;'sin the intervals,
we could be accurate to second order.) Now for certain values of w and M, the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can choose M to be an integer
power of 2, and define a set of special w’'s by

2mm
where m hasthevaluesm = 0,1,...,M/2 — 1. Then equation (13.9.4) becomes
M-—1
I{wm) = Ae™m* N~ he*™ ™M = A" [DFT(ho . .. har—1)]m (13.9.6)

§=0

Equation (13.9.6), while simple and clear, is emphatically not recommended for use: It is
likely to give wrong answers!

The problem liesin the oscillatory nature of theintegral (13.9.1). If h(t) isat al smooth,
and if w islarge enough to imply several cyclesintheinterval [a, b] — infact, wy, in equation
(13.9.5) gives exactly m cycles — then the value of I istypically very small, so small that
it is easily swamped by first-order, or even (with centered values) second-order, truncation
error. Furthermore, the characteristic “small parameter” that occurs in the error term is not
A/(b—a) =1/M, asit would beif theintegrand were not oscillatory, but wA, which can be
as large as 7 for w’s within the Nyquist interval of the DFT (cf. equation 13.9.5). The result
is that equation (13.9.6) becomes systematically inaccurate as w increases.

It is a sobering exercise to implement equation (13.9.6) for an integral that can be done
analytically, and to see just how bad it is. We recommend that you try it.

Let ustherefore turn to a more sophisticated treatment. Given the sampled points h;, we
can approximate the function h(t) everywhere in the interval [a, b] by interpolation on nearby
h;'s. The simplest case is linear interpolation, using the two nearest h;’s, one to the left and
one to theright. A higher-order interpolation, e.g., would be cubic interpolation, using two
points to the left and two to the right — except in the first and last subintervals, where we
must interpolate with three h;’s on one side, one on the other.

The formulas for such interpolation schemes are (piecewise) polynomial in the inde-
pendent variable ¢, but with coefficients that are of course linear in the function values
h;. Although one does not usually think of it in this way, interpolation can be viewed as
approximating afunction by asum of kernel functions (which depend only on theinterpolation
scheme) times sample values (which depend only on the function). Let us write

h(t) ~ ioh] " (t _Atf) + S e (t _Atj) (139.7)

j=endpoints

Here v(s) is the kernel function of an interior point: It is zero for s sufficiently negative
or sufficiently positive, and becomes nonzero only when s is in the range where the
h; multiplying it is actualy used in the interpolation. We aways have ¢(0) = 1 and
P(m) = 0, m = £1,£2, ..., since interpolation right on a sample point should give the
sampled function value. For linear interpolation 1 (s) is piecewise linear, rises from 0 to 1
for s in (—1,0), and falls back to O for s in (0, 1). For higher-order interpolation, ¥ (s) is
made up piecewise of segments of Lagrange interpolation polynomials. It has discontinuous
derivatives at integer values of s, where the pieces join, because the set of points used in
the interpolation changes discretely.

As already remarked, the subintervals closest to a and b require different (noncentered)
interpolation formulas. This is reflected in equation (13.9.7) by the second sum, with the
special endpoint kernels ¢; (s). Actually, for reasons that will become clearer below, we have
included all the points in the first sum (with kernel ), so the ¢;’s are actualy differences
between true endpoint kernels and the interior kernel 1. It is atedious, but straightforward,
exercise to write down al the ¢;(s)’s for any particular order of interpolation, each one
consisting of differences of Lagrange interpolating polynomials spliced together piecewise.

Now apply the integral operator f: dt exp(iwt) to both sides of equation (13.9.7),
interchange the sums and integral, and make the changes of variable s = (¢t — ¢;)/A in the
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586 Chapter 13.  Fourier and Spectral Applications

first sum, s = (¢ — a)/A in the second sum. The result is

M
I A [W(0)) he? + > hja,(0) (13.9.8)
j=0 j=endpoints
Here 6 = wA, and the functions W (6) and «;(9) are defined by
W(0) = / ds e y(s) (13.9.9)
o;(0) = / dse® (s — 7) (13.9.10)

The key point is that equations (13.9.9) and (13.9.10) can be evaluated, anaytically,
once and for al, for any given interpolation scheme. Then equation (13.9.8) is an algorithm
for applying “endpoint corrections’ to a sum which (as we will see) can be done using the
FFT, giving a result with high-order accuracy.

We will consider only interpolations that are left-right symmetric. Then symmetry
implies

ori—j(s) = @i(=s)  an—;(0) = e"Maj(0) = e a;(0) (139.11)
where * denotes complex conjugation. Also, 1(s) = 1 (—s) impliesthat W (6) isred.

Turn now to the first sum in equation (13.9.8), which we want to do by FFT methods.
To do so, choose some N that is an integer power of 2 with N > M + 1. (Note that
M need not be a power of two, so M = N — 1 isadlowed) If N > M + 1, define
hij =0, M+1<j<N-—1,i.e, " “zero pad’ the array of h;’s so that j takes on the range
0 < j < N — 1. Then the sum can be done as a DFT for the special values w = wj, given by

2n N
wnl =~ = n=0,1,..., 2 1 (13.9.12)
For fixed M, the larger N is chosen, the finer the sampling in frequency space. The
value M, on the other hand, determines the highest frequency sampled, since A decreases
with increasing M (equation 13.9.3), and the largest value of wA is always just under =
(eguation 13.9.12). In general it is advantageous to oversample by at least a factor of 4, i.e.,
N > 4M (see below). We can now rewrite equation (13.9.8) in itsfina form as

I(wn) = Ae“’"a{W(H)[DI——I'(ho . thl)]n

+ ozo(H)ho + a1(9)h1 =+ az(@)hQ =+ a3(9)h3 + ...

+ eiw(bia) [Oég (e)hj\/l + a: (e)h]ufl + a; (9)h1\472 + Oé; (g)h]\/jfg + .. :|

(13.9.13)

For cubic (or lower) polynomial interpolation, at most the terms explicitly shown above

are nonzero; the ellipses (. . .) can therefore be ignored, and we need explicit forms only for
the functions W, ap, a1, a2, ag, calculated with equations (13.9.9) and (13.9.10). We have
worked these out for you, in the trapezoidal (second-order) and cubic (fourth-order) cases.
Here aretheresults, dlong with thefirst few terms of their power series expansions for small 6:

Trapezoidal order:

2(1 — cos0) 1 5 1 4 1 4
wWeo)=———=~1— —0 —0% — ———0
©) 02 12 + 360 20160
~ (1—cos®) .(0—sin0)
ap(f) = — 72 +1 B
1 1 1 1 1 1 1 1
z——+—92——94+—96+'0(———92—1——64— 96>
2 24 720 40320 ' 6 120 5040 362880

a; =az=a3 =0
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13.9 Computing Fourier Integrals Using the FFT 587

Cubic order:
6+ 62 1, 23
W(6) = 3 —4cosf 20)~1— —0t 4 ——
©) ( 364 > (3 = 4cos 6 + cos 26) 7200 T 15120
a0(8) = (—42 4 50?) + (6 4 02)(8 cos § — cos 20) L (—120 + 60%) + (6 + 62) sin 20
o= 604 604
2 1 103 169 2 2 8 86
—S 4 02—t - 00 +i0 | =+ —0%2 - ——0* + °
3 45 15120 226800 45 105 2835 467775
on(6) = 14(3 — 6%) — 7(6 + 02) cos 0 N ;300 — 5(6 + 62)sin 6
n 604 604
7 7 5 7 7 1 11 13
~———02 4+ —0t - 0% +i0 ( — — —0? 0* — 6°
24 180 3456 259200 72 168 72576 5987520
©) —4(3 — 02) 4+ 2(6 + 62) cos 0 N —120 4+ 2(6 + 62) sin 6
o = (3
? 304 304
11 5 1 7 1 11 13
-4 —02— —0t+ ——05+i0 (—— —% - 0 96>
6 1 6048° T eason’ ' 90 210 907200 " 7484400
2(3—6%) — (6 +062 0 60— (6+0602)sin0
s(0) = ( ) — (6 + 69) cos 4 (6 4+ 6¢) sin
664 664
1 Lz, 5 g 1 96+'9<7 1 o 1 13 96>
N— — —— — 0" — W —— — -
24 180 24192 259200 360 840 362880 29937600

The program dftcor, below, implements the endpoint corrections for the cubic case.
Giveninputvaluesof w, A, a, b, andanarray withtheeight valueshy , . . . , hs, har—s, . .., har,
it returnsthe real and imaginary parts of the endpoint correctionsin equation (13.9.13), and the
factor W (6). The code is turgid, but only because the formulas above are complicated. The
formulas have cancellations to high powers of 6. It istherefore necessary to compute the right-
hand sides in double precision, even when the corrections are desired only to single precision.
It is also necessary to use the series expansion for small values of . The optimal cross-over
value of 6 depends on your machine's wordlength, but you can always find it experimentally
as the largest value where the two methods give identical results to machine precision.

#include <math.h>

void dftcor(float w, float delta, float a, float b, float endptsl[],

float *corre, float *corim, float *corfac)
For an integral approximated by a discrete Fourier transform, this routine computes the cor-
rection factor that multiplies the DFT and the endpoint correction to be added. Input is the
angular frequency w, stepsize delta, lower and upper limits of the integral a and b, while the
array endpts contains the first 4 and last 4 function values. The correction factor W (0) is
returned as corfac, while the real and imaginary parts of the endpoint correction are returned
as corre and corim.
{

void nrerror(char error_text[]);

float a0i,alr,ali,alr,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t;

float t2,t4,t6;

double cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,tmth2,tth4i;

th=w*xdelta;
if (a>= b || th < 0.0e0 || th > 3.1416e0) nrerror("bad arguments to dftcor");
if (fabs(th) < 5.0e-2) { Use series.

t=th;

t2=t*t;

t4=t2%t2;

t6=t4*t2;
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588 Chapter 13.  Fourier and Spectral Applications

*corfac=1.0-(11.0/720.0) *t4+(23.0/15120.0) *t6;
a0r=(-2.0/3.0)+t2/45.0+(103.0/15120.0) *t4-(169.0/226800.0) *t6;
alr=(7.0/24.0)-(7.0/180.0)*t2+(5.0/3456.0) *t4-(7.0/259200.0) *t6;
a2r=(-1.0/6.0)+t2/45.0-(5.0/6048.0) *t4+t6/64800.0;
a3r=(1.0/24.0)-t2/180.0+(5.0/24192.0) *t4-t6/259200.0;
a0i=t*(2.0/45.0+(2.0/105.0)*t2-(8.0/2835.0) *t4+(86.0/467775.0) *t6) ;
ali=t*(7.0/72.0-t2/168.0+(11.0/72576.0) *t4-(13.0/5987520.0) *t6) ;
a2i=t*(-7.0/90.0+t2/210.0-(11.0/90720.0) *t4+(13.0/7484400.0) *t6) ;
a3i=t*(7.0/360.0-t2/840.0+(11.0/362880.0)*t4-(13.0/29937600.0) *t6) ;
} else { Use trigonometric formulas in double precision.
cth=cos(th) ;
sth=sin(th);
ctth=cth*cth-sth*sth;
stth=2.0e0*sth*cth;
th2=th*th;
th4=th2*th2;
tmth2=3.0e0-th2;
spth2=6.0e0+th2;
sth4i=1.0/(6.0e0*th4) ;
tth4i=2.0e0*sth4i;
*corfac=tth4ixspth2+*(3.0e0-4.0e0*cth+ctth);
a0r=sth4i*(-42.0e0+5.0e0*th2+spth2*(8.0e0*cth-ctth));
a0i=sth4ix* (th*(-12.0e0+6.0e0*th2)+spth2*stth) ;
alr=sth4ix(14.0e0*tmth2-7.0e0*spth2*cth) ;
ali=sth4i*(30.0e0*th-5.0e0*spth2*sth) ;
a2r=tth4ix(-4.0e0*tmth2+2.0e0*spth2*cth) ;
a2i=tth4i*(-12.0e0*th+2.0e0*spth2*sth);
a3r=sth4i*(2.0e0*tmth2-spth2*cth);
a3i=sth4i*(6.0e0*th-spth2*sth);
}
cl=aOr*endpts[1]+alr*endpts [2]+a2r*endpts [3]+a3r*endpts[4];
sl=a0i*endpts[1]+ali*endpts[2]+a2i*endpts [3]+a3i*endpts[4];
cr=aOr*endpts[8]+alr*endpts [7]+a2r*endpts [6]+a3r*endpts[5];
sr = -a0ixendpts[8]-ali*endpts[7]-a2i*endpts[6]-a3i*endpts[5];
arg=wx(b-a) ;
c=cos(arg) ;
s=sin(arg) ;
*xcorre=cl+c*cr-s*sr;
kcorim=sl+s*cr+c*sr;

Since the use of dftcor can be confusing, we also give an illustrative program dftint
which uses df tcor to compute equation (13.9.1) for general a, b, w, and h(t). Several points
within this program bear mentioning: The parameters M and NDFT correspond to M and N
in the above discussion. On successive calls, we recompute the Fourier transform only if
a or b or h(t) has changed.

Since dftint is designed to work for any value of w satisfying wA < 7, not just the
specia vaues returned by the DFT (equation 13.9.12), we do polynomial interpolation of
degree MPOL on the DFT spectrum. You should be warned that a large factor of oversampling
(N > M) isrequired for this interpolation to be accurate. After interpolation, we add the
endpoint corrections from dftcor, which can be evaluated for any w.

While dftcor is good at what it does, dftint isillustrative only. It is not a general
purpose program, because it does not adapt its parameters M, NDFT, MPOL, or its interpolation
scheme, toany particular function 4(¢). Youwill haveto experiment with your own application.

#include <math.h>

#include "nrutil.h"

#define M 64

#define NDFT 1024

#define MPOL 6

#define TWOPI (2.0%3.14159265)
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13.9 Computing Fourier Integrals Using the FFT 589

The values of M, NDFT, and MPOL are merely illustrative and should be optimized for your
particular application. M is the number of subintervals, NDFT is the length of the FFT (a power
of 2), and MPOL is the degree of polynomial interpolation used to obtain the desired frequency
from the FFT.

void dftint(float (*func) (float), float a, float b, float w, float *cosint,
float *sinint)

Example program illustrating how to use the routine dftcor. The user supplies an external

function func that returns the quantity h(¢). The routine then returns f: cos(wt)h(t) dt as

cosint and Lfsh(um)h(t)dtas sinint.
{
void dftcor(float w, float delta, float a, float b, float endptsl[],
float *corre, float *corim, float *corfac);
void polint(float xal[], float yal[l, int n, float x, float *y, float *dy);
void realft(float datal], unsigned long n, int isign);
static int init=0;
int j,nn;
static float aold = -1.e30,bold = -1.e30,delta, (*funcold) (float);
static float data[NDFT+1],endpts[9];
float c,cdft,cerr,corfac,corim,corre,en,s;
float sdft,serr,*cpol,*spol,*xpol;

cpol=vector(1,MPOL) ;
spol=vector (1,MPOL) ;
xpol=vector(1,MPOL) ;
if (init !'= 1 || a !'= aold || b != bold || func != funcold) {
Do we need to initialize, or is only w changed?
init=1;
aold=a;
bold=b;
funcold=func;
delta=(b-a)/M;
Load the function values into the data array.
for (j=1;j<=M+1;j++)
datal[jl=(xfunc) (a+(j-1)*delta);

for (j=M+2;j<=NDFT;j++) Zero pad the rest of the data array.
datal[j]1=0.0;
for (j=1;j<=4;j++) { Load the endpoints.

endpts[jl=datal[j];
endpts [j+4]=data[M-3+j];
}
realft(data,NDFT,1);
realft returns the unused value corresponding to wy /2 in data[2]. We actually want
this element to contain the imaginary part corresponding to wq, which is zero.
data[2]=0.0;
}
Now interpolate on the DFT result for the desired frequency. If the frequency is an wp,
i.e., the quantity en is an integer, then cdft=data[2*en-1], sdft=data[2*en], and you
could omit the interpolation.
en=w*delta*NDFT/TWOPI+1.0;
nn=IMIN(IMAX((int) (en-0.5*MPOL+1.0),1) ,NDFT/2-MPOL+1); Leftmost point for the
for (j=1;j<=MPOL;j++,nn++) { interpolation.
cpol[jl=data[2*nn-1];
spol[jl=data[2*nn];
xpol[jl=nn;

polint (xpol,cpol,MPOL,en,&cdft,&cerr) ;
polint (xpol,spol,MPOL,en,&sdft,&serr) ;

dftcor(w,delta,a,b,endpts,&corre,&corim,&corfac) ; Now get the endpoint cor-
cdft *= corfac; rection and the mul-
sdft *= corfac; tiplicative factor W (9).

cdft += corre;
sdft += corim;
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590 Chapter 13.  Fourier and Spectral Applications

c=delta*cos(w*a) ; Finally multiply by A and exp(iwa).
s=delta*sin(w*a) ;

*cosint=c*xcdft-s*sdft;

*sinint=s*cdft+c*sdft;

free_vector(cpol,1,MPOL) ;

free_vector(spol,1,MPOL) ;

free_vector(xpol,1,MPOL);

Sometimes one is interested only in the discrete frequencies w,, of equation (13.9.5),
the ones that have integral numbers of periods in the interval [a,b]. For smooth h(t), the
value of I tends to be much smaller in magnitude at these w’s than at values in between,
since the integral half-periods tend to cancel precisely. (That iswhy one must oversample for
interpolation to be accurate: I(w) is oscillatory with small magnitude near the wy,,’s.) If you
want these w.,,'s without messy (and possibly inaccurate) interpolation, you have to set N to
amultiple of M (compare equations 13.9.5 and 13.9.12). In the method implemented above,
however, N must be at least M + 1, so the smallest such multipleis 2M, resulting in afactor
~2 unnecessary computing. Alternatively, one can derive a formula like equation (13.9.13),
but with the last sample function ha; = h(b) omitted from the DFT, but included entirely in
the endpoint correction for hys. Then one can set M = N (an integer power of 2) and get the
specia frequencies of equation (13.9.5) with no additional overhead. The modified formulais

I(wm) = Aei“’m“{W(a)[DFT(ho cocha—1)]m
+ ao(0)ho + a1(0)h1 + a2(8)h2 + as(8)hs (13.9.14)
+ et [A(O)hM + ay(0)har—1 + oo (0)har—a + a;(a)ths} }
where § = w,, A and A(0) is given by
A(0) = —ao(0) (13.9.15)

for the trapezoidal case, or

(—6 4+ 116%) 4 (6 + 6%) cos 20

A(0) = — i Im[a(0)]
11 680 ' 11 (139.16)
~ 2 p2_ _©9 4 - 6 -
3750 To? Taams? imlee@)

for the cubic case.

Factorslike W (0) arise naturally whenever one cal culates Fourier coefficients of smooth
functions, and they are sometimes called attenuation factors[1]. However, the endpoint
corrections are equally important in obtaining accurate values of integrals. Narasimhan
and Karthikeyan [2] have given a formula that is algebraically equivalent to our trapezoidal
formula. However, their formula requires the evaluation of two FFTs, which is unnecessary.
The basic idea used here goes back at least to Filon[3] in 1928 (before the FFT!). He used
Simpson’s rule (quadratic interpolation). Since thisinterpolation is not |eft-right symmetric,
two Fourier transforms are required. An alternative algorithm for equation (13.9.14) has been
given by Lyness in[4]; for related references, see[5]. To our knowledge, the cubic-order
formulas derived here have not previously appeared in the literature.

Calculating Fourier transforms when the range of integration is (—oo, oo) can be tricky.
If the function falls off reasonably quickly at infinity, you can split the integral at a large
enough value of ¢. For example, the integration to + oo can be written

/ e h(t) dt:/ e h(t) dt—|—/ e h(t)dt
a b

a

b, h(b)e™® R’ (b)e™®
= iwt — — .
/a e h(t)dt ; —+ (iw)? (13.9.17)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD



13.10 Wavelet Transforms 501

The splitting point b must be chosen large enough that the remaining integral over (b, ) is
small. Successive terms in its asymptotic expansion are found by integrating by parts. The
integral over (a,b) can be done using dftint. You keep as many terms in the asymptotic
expansion as you can easily compute. See[6] for some examples of this idea. More
powerful methods, which work well for long-tailed functions but which do not use the FFT,
are described in[7-9].
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13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
afast, linear operation that operates on adata vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transformisinvertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors e;,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions’ and “wavelets.”

Of coursethere are an infinity of possible bases for function space, almost all of
them uninteresting! What makesthe wavel et basisinteresting isthat, unlikesinesand
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformed into the wavel et
domain. Analogoudy with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
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