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The discrete form of Parseval’s theorem is

N-1 1 N-1
il = S 1 (12.1.19
k=0 n:O

There are also discrete analogs to the convolution and correlation theorems (equatio
12.0.9 and 12.0.11), but we shall defer then§18.1 ands13.2, respectively.

%

]
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Elliott, D.F,, and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
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12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Defind/ as the complex number

W = e2ri/N (12.2.3

Then (12.1.7) can be written as

N—

i

Wnkhy, (12.2.2
k=0

In other words, the vector df;’s is multiplied by a matrix whosén, k)th element
is the constantV to the powem x k. The matrix multiplication produces a vector
result whose components are tHg's. This matrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the;
required powers ofl’. So, the discrete Fourier transform appears to b&@an ?)
process. These appearances are deceiving! The discrete Fourier transform cal
in fact, be computed i®(N log, N) operations with an algorithm called tifast
Fourier transform, or FFT. The difference betweel log, N and N? is immense.
With N = 108, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existenc
of an FFT algorithm became generally known only in the mid-1960s, from the work &
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (B ¢hat efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!
One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length can be rewritten as the sum of two
discrete Fourier transforms, each of lengfji2. One of the two is formed from the
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12.2 Fast Fourier Transform (FFT) 505

even-numbered points of the origin&l, the other from the odd-numbered points.
The proof is simply this:

N—-1
F, = E eQﬂ'z]k/ij
J=0

N/2-1 N/2-1
_ Z e27rik(2j)/Nf2j+ Z ezmk(2j+1)/1vf2j+l
2 = (12.2.3
N/2—1 N/t
_ Z eQﬂikj/(N/2)f2j+Wk Z e2ﬂikj/(N/2)f2j+1
3=0 =0
= Fg + Wk Fy

In the last line,IW is the same complex constant as in (12.2F),denotes théth
component of the Fourier transform of lendtt 2 formed from the even components
of the originalf;’s, while Fy is the corresponding transform of lengify2 formed
from the odd components. Notice also thkah the last line of (12.2.3) varies from
0 to NV, not just toN/2. Nevertheless, the transformi§ and Fy? are periodic ink
with length N/2. So each is repeated through two cycles to obgin

The wonderful thing about tHeaniel son-Lanczos Lemma is that it can be used
recursively. Having reduced the problem of computifig to that of computing
F¢ and F¢, we can do the same reduction Bf; to the problem of computing
the transform ofits V/4 even-numbered input data aid/4 odd-numbered data.
In other words, we can definEg® and Fi2° to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successiv
subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case is th
one in which the originalV is an integer power of 2. In fact, we categorically
recommend that yoonly use FFTs withV a power of two. If the length of your data
set is not a power of two, pad it with zeros up to the next power of two. (We will give
more sophisticated suggestions in subsequent sections below.) With this restrictio
on N, it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
is the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattduggf N
e's ando’s, there is a one-point transform that is just one of the input numpgrs
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(Of course this one-point transform actually does not deperid simce it is periodic
in k& with period 1.)

The next trick is to figure out which value afcorresponds to which pattern of
e's ando’s in equation (12.2.4). The answer is: Reverse the patteers@ndo’s,
then lete = 0 ando = 1, and you will havejn binary the value ofn. Do you see
why it works? It is because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits dthis idea obit reversal
can be exploited in a very clever way which, along with the Danielson-Lanczos
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506 Chapter 12.  Fast Fourier Transform

000 > 000 000
001 001 001
010 \ /: 010 010
011 011 011
100 100 100
101 > 101 101
110 / \ 110 110
111 > 111 111
@ (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the original vector of data f;
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individua
numbers are in the order not of j, but of the number obtained by bit-reversing ;.
Then the bookkeeping on the recursive application of the Danielson-LanczosLemma
becomes extraordinarily smple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log, N combinations, so the whole
algorithmis of order N log, IV (assuming, asis the case, that the process of sorting
into bit-reversed order is no greater in order than N log, INV).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sortsthe datainto bit-reversed order. Luckily thistakes no additional storage,
sinceit involves only swapping pairs of elements. (If k1 isthe bit reverse of k5, then
ko is the bit reverse of k;.) The second section has an outer loop that is executed
log, N times and calculates, in turn, transforms of length 2,4, 8,..., N. For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Danielson-L anczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log , N
times. Computation of the sines and cosines of multiple angles is through ssmple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originaly written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (datal[1l..2+*nn]), and isign, which should be set to either +1 and isthe sign
of 4 in the exponentia of equation (12.1.7). When isign is set to —1, the routine
thus calculates the inverse transform (12.1.9) — except that it does not multiply by
the normalizing factor 1/N that appearsin that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points. The actual
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12.2 Fast Fourier Transform (FFT) 507

length of the real array (data[1..2#nn]) is 2 times nn, with each complex value
occupying two consecutive locations. In other words, data[1] is the real part of
fo, data[2] is the imaginary part of f,, and so on up to data[2*nn-1], which
is the rea part of fy_1, and data[2#nn], which is the imaginary part of fn_1.
The FFT routine gives back the F,,’s packed in exactly the same fashion, as nn
complex numbers.

Thereal andimaginary parts of the zero frequency component F'yareindatal[1]
anddatal[2]; thesmallest nonzero positive frequency hasreal and imaginary partsin
data[3] and data[4]; the smallest (in magnitude) nonzero negative frequency has
real and imaginary partsin data[2*nn-1] and data[2*nn]. Positive frequencies
increasing in magnitude are stored in the real-imaginary pairsdata[5], datal[6]
up to data[nn-1], data[nn]. Negative frequencies of increasing magnitude are
stored in data[2*nn-3], data[2*nn-2] down to data[nn+3], data[nn+4].
Finally, thepair data[nn+1], data[nn+2] containthereal and imaginary parts of
the one aliased point that containsthe most positive and the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

Thisis a good place to remind you that you can aso use aroutine like four1
without modification even if your input data array is zero-offset, that is has the range
datal[0..2*nn-1]. Inthis case, simply decrement the pointer to data by onewhen
fourl isinvoked, eg., fouri(data-1,1024,1) ;. Therea part of f, will now be
returned in data[0], the imaginary part in data[1], and so on. See §1.2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b); (b)=tempr

void fourl(float data[], unsigned long nn, int isign)

Replaces data[1..2*nn] by its discrete Fourier transform, if isign is input as 1; or replaces
datal1l..2*nn] by nn times its inverse discrete Fourier transform, if isign is input as —1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn MUST
be an integer power of 2 (this is not checked for!).

{
unsigned long n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta; Double precision for the trigonomet-
float tempr,tempi; ric recurrences.
n=nn << 1;
j=1;
for (i=1;i<n;i+=2) { This is the bit-reversal section of the
if (G > 1) { routine.
SWAP(datalj],datalil); Exchange the two complex numbers.
SWAP(datal[j+1] ,datali+1]);
}
m=nn;
while (m >= 2 && j > m) {
j—=m
m >>= 1;
}
joA=m
}
Here begins the Danielson-Lanczos section of the routine.
mmax=2;
while (n > mmax) { Outer loop executed log, nn times.
istep=mmax << 1;
theta=isign*(6.28318530717959/mmax) ; Initialize the trigonometric recurrence.

wtemp=sin(0.5%theta) ;
wpr = -2.0*wtemp*wtemp;
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508 Chapter 12.  Fast Fourier Transform
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Figure 12.2.2. Input and output arrays for FFT. (@) The input array contains N (a power of 2)
complex time samples in areal array of length 2N, with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at NV values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

wpi=sin(theta) ;
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) { Here are the two nested inner loops.
for (i=m;i<=n;i+=istep) {
j=i+mmax; This is the Danielson-Lanczos for-
tempr=wr*datal[j]-wixdata[j+1]; mula:
tempi=wr*data[j+1]+wixdata[j];
datal[jl=datal[i]-tempr;
data[j+1]=datal[i+1]-tempi;
datal[i] += tempr;
datal[i+1] += tempi;
}
wr=(wtemp=wr) *wpr-wi*wpi+wr; Trigonometric recurrence.
wi=wi*xwpr+wtemp*wpi+wi;
}

mmax=istep;
}

(A double precision version of four1, named df our1, is used by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)
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12.2 Fast Fourier Transform (FFT) 509

Other FFT Algorithms

We should mention that thereareanumber of variantsonthebasic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log , IV iterations. In
the literature, this sequence is caled a decimation-in-time or Cooley-Tukey FFT
algorithm. It is aso possible to derive FFT algorithms that first go through a set of
log, NN iterations on the input data, and rearrange the output values into bit-reverse
order. Theseare called decimation-in-frequency or Sande-Tukey FFT a gorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domainand then, after some manipulation, back out again. Inthesecasesitispossible
to avoid all bit reversing. You use a decimation-in-frequency algorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only a small fraction of an FFT's
operations count, and since most useful operations in the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of length N not all the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of special symmetries of that particular small N. For example, for
N = 4, the trigonometric sines and cosines that enter are al +1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than ssimpler FFTs by some significant, but not overwhelming, factor,
e.g., 20 or 30 percent.

Therearealso FFT algorithmsfor datasets of length V not apower of two. They
work by using relations analogous to the Danielson-Lanczos Lemma to subdivide
the initial problem into successively smaller problems, not by factors of 2, but by
whatever small prime factors happen to divide N. The larger that the largest prime
factor of N is, the worse this method works. If NV is prime, then no subdivision
is possible, and the user (whether he knows it or not) is taking a slow Fourier
transform, of order N2 instead of order Nlog, N. Our advice is to stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transform algorithms. Winograd algorithms are in some ways analogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small-N discrete Fourier transforms, e.g., for N = 2,3,4,5,7,8,11,13, 16.
The algorithms also use a new and clever way of combining the subfactors. The
method involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications in the
algorithm. For some especially favorable values of NV, the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated dataindexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with
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510 Chapter 12.  Fast Fourier Transform

integer arithmetic modulo some large prime N+1, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at al, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.
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12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, j = 0...N — 1. To use fourl, we put these into a complex array
with al imaginary parts set to zero. The resulting transform F,, n =0...N — 1
satisfies Fiy_,,* = F,. Since this complex-valued array has real values for F|
and Fi /o, and (IN/2) — 1 other independent values F; ... Fy/o_1, it has the same
2(N/2 — 1)+ 2 = N “degrees of freedom” as the original, real data set. However,
the use of thefull complex FFT algorithmfor real dataisinefficient, bothin execution
time and in storage required. You would think that there is a better way.

There are two better ways. Thefirst is “mass production”: Pack two separate
real functionsinto the input array in such away that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase
two of an item when you only need one. However, remember that for correlations
and convolutions the Fourier transforms of two functions are involved, and thisis a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half itslength. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. Thisis donein the program realft below.
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