500 Chapter 12.  Fast Fourier Transform

PSD-per-unit-time converges to finite values at all frequencies except those where
h(t) has a discrete sine-wave (or cosine-wave) component of finite amplitude. At
those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean sguare amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, alist of measurements of h(¢;) for adiscrete set of ¢;'s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Academic
Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(¢) is sampled (i.e, its vaue is
recorded) at evenly spaced intervalsintime. Let A denote thetimeinterval between
consecutive samples, so that the sequence of sampled values is

hp=h(nA)  n=..,-3,-2,-1,0,1,2,3,... (12.1.1)

The reciprocal of the timeinterval A is caled the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a special frequency f., called the
Nyquist critical frequency, given by

1
fe= 5A (12.1.2)
If asine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2.
The Nyquist critical frequency isimportant for two related, but distinct, reasons.

Oneis good news, and the other bad news. First the good news. It is the remarkable
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12.1 Fourier Transform of Discretely Sampled Data 501

fact known as the sampling theorem: If a continuous function A(t), sampled at an
interval A, happensto be bandwidth limited to frequencies smaller in magnitude than
feie,if H(f) =0foral |f] > f., thenthefunction 2(t) is completely determined
by its samples h,,. Infact, h(t) is given explicitly by the formula

sin[27 f.(t — nA)]
Anégwh ) (12.1.3)
This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signa that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at arate A ~! equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range —f. < f < f. is spuriously moved into that range. This
phenomenonis called aliasing. Any frequency component outside of the frequency
range (— f., f) is aliased (falsely trandated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(2mi f1t)
and exp(27i fot) give the same samples at an interval A if and only if f; and
f2 differ by a multiple of 1/A, which is just the width in frequency of the range
(= fe, feo). Thereis little that you can do to remove aliased power once you have
discretely sampled asignal. The way to overcome aliasing isto (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equal to zero outside of the frequency
rangein between — f. and f.. Then we look to the Fourier transform to tell whether
the continuous function has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches f. from below, or — f. from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of afunction from afinite number of its
sampled points. Suppose that we have N consecutive sampled values

he = h(ty), te=kA, k=0,1,2...,N—1 (12.1.4)
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Figure 12.1.1.  The continuous function shown in (a) is nonzero only for a finite interval of time T'.
It follows that its Fourier transform, whose modulus is shown schematicaly in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval A, asin (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that range is folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is A. To make things simpler, let us also suppose that
N is even. If the function A(t) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the NV points
given. Alternatively, if thefunction h(t) goes on forever, then the sampled pointsare
supposed to be at least “typical” of what h(t) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at al values of f in the range —f. to f., let us seek estimates
only at the discrete values

n N N
f"_NA’ n=—go g (12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not NV, values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but all the
others are. This reduces the count to N.
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12.1 Fourier Transform of Discretely Sampled Data 503

Theremaining step is to approximatetheintegral in (12.0.1) by a discrete sum:

00 N-1 N—1
H(fn) = / h(t)e%rifntdt ~ Z hk eQﬂ'ifntkA =A Z hk eZTrikn/N
o k=0 k=0

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is caled the discrete Fourier transform of the NV
points hi. Let us denote it by H,,,

N-—-1
Hy =Y hy ™0/ (12.1.7)
k=0

The discrete Fourier transform maps N complex numbers(the h ,'s) into N complex
numbers (the H,,’s). It does not depend on any dimensional parameter, such as the
time scale A. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval A can be rewritten as

H(fn) ~ AH, (12.1.8)

where f, is given by (12.1.5).

Up to now we havetaken theview that theindex n in (12.1.7) variesfrom — N /2
to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in n, with
period N. Therefore, H_,, = Hy_,, n =1,2,.... Withthis conversionin mind,
onegeneraly letsthen in H,, vary from0 to N — 1 (one complete period). Thenn
and & (in hy) vary exactly over the same range, so the mapping of N numbers into
N numbersis manifest. When this conventionis followed, you must remember that
zero frequency corresponds to n = 0, positive frequencies 0 < f < f. correspond
tovaues1 < n < N/2 — 1, while negative frequencies — f. < f < 0 correspond to
N/24+1<n < N-1. Thevauen = N/2 correspondstoboth f = f.and f = —f..

Thediscrete Fourier transform has symmetry propertiesalmost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read h, for h(t), H,, for H(f), and Hy_,,
for H(—f). (Likewise, “even” and “odd” in time refer to whether the values h i, at k
and N — k areidentical or the negative of each other.)

The formulafor the discrete inverse Fourier transform, which recovers the set
of hy's exactly from the H,,’s is:

N-1
hi=— Y Hy e 2mikn/N (12.1.9)

n=0

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N. This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.
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504 Chapter 12.  Fast Fourier Transform

The discrete form of Parseval’s theorem is

2

-1

hil? = LN 2 12.1.10
|k|—NZ|Hn| (12.1.10)
n=0

>
Il

0

Therearealso discrete anal ogsto the convol ution and correl ation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.
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Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computationisinvolved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W = e2mi/N (12.2.1)
Then (12.1.7) can be written as
N-1
Hy =Y Wh, (12.2.2)
k=0

In other words, the vector of hj’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n x k. The matrix multiplication produces a vector
result whose componentsarethe H,,’s. Thismatrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the
required powers of W. So, the discrete Fourier transform appears to be an O(N ?)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log, N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log, N and N? isimmense.
With N = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on amicrosecond cycletime computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of JW. Cooley and JW. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as adozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczosin 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length /2. One of the two is formed from the
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