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for (i=m-1;i>=1;i--) { A plane rotation as in the origi-
f=s*xe[i]; nal QL, followed by Givens
b=c*e[i]; rotations to restore tridiag-
e[i+1]=(r=pythag(f,g)); onal form.
if (r == 0.0) { Recover from underflow.
d[i+1] -= p;
e[m]=0.0;
break;
}
s=f/r;
c=g/r;
g=d[i+1]-p;

r=(d[i]-g) *s+2.0%c*b;
dli+1]=g+(p=s*r);

g=c*r-b;
/* Next loop can be omitted if eigenvectors not wanted*/
for (k=1;k<=n;k++) { Form eigenvectors.

f=z[k] [i+1];
z[k] [i+1]=s*z[k] [1]+c*f;
z[k] [il=c*z[k] [i]-s*f;
}
}
if (r == 0.0 && i >= 1) continue;
d[1] -= p;
elll=g;
e[m]=0.0;
}
} while (m != 1);
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11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as also can Householder reduction to tridiagonal form followed by
QL iteration. Complex versions of the previous routines jacobi, tred2, and tqli
are quite analogous to their real counterparts. For working routines, consult [1,2].

An alternative, using the routines in this book, is to convert the Hermitian
problem to areal, symmetric one: If C = A + B is a Hermitian matrix, then the
n x n complex eigenvalue problem

(A+iB)- (U4 iv) = A(u+iv) (11.4.2)
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is equivalent to the 2n x 2n rea problem

E Rl we

Note that the 2n x 2n matrix in (11.4.2) is symmetric: A7 = A and BY = —B
if C is Hermitian.
Corresponding to a given eigenvalue ), the vector

-V
[ y ] (11.4.3)
is also an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thusif A1, Ae,..., A\, are the eigenvalues of C, then
the 2n eigenvalues of the augmented problem (11.4.2) are A1, A1, A2, A, .. .,
An, An; €ach, in other words, is repeated twice. The eigenvectors are pairs of the
formu +4év andi(u + iv); that is, they are the same up to an inessential phase. Thus
we solvethe augmented problem (11.4.2), and choose one el genval ueand ei genvector
from each pair. These givethe eigenvaluesand eigenvectorsof the original matrix C.

Working with the augmented matrix requires afactor of 2 more storage than the
original complex matrix. In principle, acomplex algorithmis also afactor of 2 more
efficient in computer time than is the solution of the augmented problem.
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11.5 Reduction of a General Matrix to
Hessenberg Form

The agorithms for symmetric matrices, given in the preceding sections, are
highly satisfactory in practice. By contrast, it is impossible to design equally
satisfactory algorithms for the nonsymmetric case. There are two reasons for this.
First, the el genval uesof anonsymmetric matrix can be very sensitiveto small changes
in the matrix elements. Second, the matrix itself can be defective, so that there is
no complete set of eigenvectors. We emphasize that these difficulties are intrinsic
properties of certain nonsymmetric matrices, and no numerical procedure can “cure’
them. The best we can hopefor are proceduresthat don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof agorithm to determine
whether a given matrix is defective or not. Thus current algorithms generally try to
find a complete set of eigenvectors, and rely on the user to inspect the results. If any
eigenvectors are almost parallel, the matrix is probably defective.
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