Chapter 11. Eigensystems

11.0 Introduction

An N x N matrix A is said to have armeigenvector x and corresponding
eigenvalue \ if

A-Xx= XX (11.0.3

Obviously any multiple of an eigenvectarwill also be an eigenvector, but we
won't consider such multiples as being distinct eigenvectors. (The zero vector is no
considered to be an eigenvector at all.) Evidently (11.0.1) can hold only if

det/A — A1/ =0 (11.0.2

which, if expanded out, is aWth degree polynomial i whose roots are the eigen-
values. This proves that there are alwayqnot necessarily distinct) eigenvalues.
Equal eigenvalues coming from multiple roots are callegknerate. Root-searching
in the characteristic equation (11.0.2) is usually a very poor computational method
for finding eigenvalues. We will learn much better ways in this chapter, as well as z
efficient ways for finding corresponding eigenvectors.

The above two equations also prove that every one of\theigenvalues has
a (not necessarily distinct) corresponding eigenvectok if set to an eigenvalue,
then the matrixA — A1 is singular, and we know that every singular matrix has at
least one nonzero vector in its nullspace ($2€ on singular value decomposition).

If you addrx to both sides of (11.0.1), you will easily see that the eigenvalues
of any matrix can be changed ghifted by an additive constant by adding to the
matrix that constant times the identity matrix. The eigenvectors are unchanged b)@
this shift. Shifting, as we will see, is an important part of many algorithms for
computing eigenvalues. We see also that there is no special significance to a zero
eigenvalue. Any eigenvalue can be shifted to zero, or any zero eigenvalue can be
shifted away from zero.
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11.0 Introduction 457

Definitions and Basic Facts
A matrix is calledsymmetric if it is equal to its transpose,
A=AT or  ay=a; (11.0.3

Itis calledHermitian or self-adjoint if it equals the complex-conjugate of its transpose
(its Hermitian conjugate, denoted by 1")

A=AT  or  ay=au* (11.0.4
It is termedorthogonal if its transpose equals its inverse,
AT . A=A.AT =1 (11.0.5

andunitary if its Hermitian conjugate equals its inverse. Finally, a matrix is called
normal if it commutes with its Hermitian conjugate,

A-AT=aT A (11.0.6

For real matrices, Hermitian means the same as symmetric, unitary means the
same as orthogonal, atmdth of these distinct classes are normal.

The reason that “Hermitian” is an important concept has to do with eigenvalues.
The eigenvalues of a Hermitian matrix are all real. In particular, the eigenvalues:
of a real symmetric matrix are all real. Contrariwise, the eigenvalues of a real &
nonsymmetric matrix may include real values, but may also include pairs of complexe
conjugate values; and the eigenvalues of a complex matrix that is not Hermitian2
will in general be complex.

The reason that “normal” is an important concept has to do with the eigen-
vectors. The eigenvectors of a normal matrix with nondegenerate (i.e., distinct)
eigenvalues are complete and orthogonal, spanningytdémensional vector space.

For a normal matrix with degenerate eigenvalues, we have the additional freedom o
replacing the eigenvectors corresponding to a degenerate eigenvalue by linear co
binations of themselves. Using this freedom, we can always perform Gram-Schmidg:
orthogonalization (consult any linear algebra text) finda set of eigenvectors that
are complete and orthogonal, just as in the nondegenerate case. The matrix who
columns are an orthonormal set of eigenvectors is evidently unitary. A special cas
is that the matrix of eigenvectors of a real, symmetric matrix is orthogonal, since
the eigenvectors of that matrix are all real.

When a matrix is not normal, as typified by any random, nonsymmetric, real
matrix, then in general we cannot fiady orthonormal set of eigenvectors, nor even
any pairs of eigenvectors that are orthogonal (except perhaps by rare chance). Whils
the N non-orthonormal eigenvectors will “usually” span thedimensional vector
space, they do not always do so; that is, the eigenvectors are not always complete.
Such a matrix is said to bdefective.
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458 Chapter 11.  Eigensystems

Left and Right Eigenvectors

While the eigenvectors of a non-normal matrix are not particularly orthogonal
among themselves, thedo have an orthogonality relation with a different set of
vectors, which we must now define. Up to now our eigenvectors have been column
vectors that are multiplied to the right of a matéx as in (11.0.1). These, more
explicitly, are termedight eigenvectors. We could also, however, try to find row
vectors, which multiplyA to the left and satisfy

X-A = XX (11.0.%

These are calletkft eigenvectors. By taking the transpose of equation (11.0.7), we
see that every left eigenvector is the transpose of a right eigenwéthertranspose

of A. Now by comparing to (11.0.2), and using the fact that the determinant of a ¢
matrix equals the determinant of its transpose, we also see that the left and righ
eigervalues of A are identical.

If the matrix A is symmetric, then the left and right eigenvectors are just
transposes of each other, that is, have the same numerical values as componen
Likewise, if the matrix is self-adjoint, the left and right eigenvectors are Hermitian
conjugates of each other. For the general nonnormal case, however, we have t
following calculation: LetX  be the matrix formed by columns from the right
eigenvectors, and ;, be the matrix formed by rows from the left eigenvectors. Then
(11.0.1) and (11.0.7) can be rewritten as
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A-XR:XR-diag(/\l.../\N) XL-A:diag()\l...)\N)-XL (1108

Multiplying the first of these equations on the left Ky, the second on the right
by Xg, and subtracting the two, gives

iﬁeo@meswnomeup 0} |rewa puas Jo ‘(Ajuo @awv

This says that the matrix of dot products of the left and right eigenvectors commute
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matriof distinct elementsare themselves diagonal. Thus, if the eigenvalues
are nondegenerate, each left eigenvector is orthogonal to all right eigenvectors exce
its corresponding one, and vice versa. By choice of hormalization, the dot productsg
of corresponding left and right eigenvectors can always be made unity for any matrix
with nondegenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or the right eigenvec
tors corresponding to a degenerate eigenvalue must be linearly combined amon
themselves to achieve orthogonality with the right or left ones, respectively. This:
can always be done by a procedure akin to Gram-Schmidt orthogonalization. The
normalization can then be adjusted to give unity for the nonzero dot products between
corresponding leftand right eigenvectors. If the dot product of corresponding left and
right eigenvectors is zero at this stage, then you have a case where the eigenvectors
are incomplete! Note that incomplete eigenvectors can occur only where there are
degenerate eigenvalues, but do not always occur in such cases (in fact, never occur
for the class of “normal” matrices). S¢g for a clear discussion.
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11.0 Introduction 459

In both the degenerate and nondegenerate cases, the final normalization to
unity of all nonzero dot products produces the result: The matrix whose rows
are left eigenvectors is the inverse matrix of the matrix whose columns are right
eigenvectorsjf the inverse exists.

Diagonalization of a Matrix

Multiplying the first equation in (11.0.8) b¥X 1, and using the fact that
and X g are matrix inverses, we get

Xg'-A-Xg=diag\ ... \y) (11.0.10
This is a particular case ofamilarity transform of the matrixA,
A - Z'A-Z (11.0.13

for some transformation matriX. Similarity transformations play a crucial role
in the computation of eigenvalues, because they leave the eigenvalues of a matri
unchanged. This is easily seen from
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det|z™'-A-Z — Al =det|z™" - (A - 1) - Z|
= det|Z| det|/A — \1| det|Z ™! (11.0.12
= det/A — A1

11D 0] [rews puas 1o

Equation (11.0.10) shows that any matrix with complete eigenvectors (which includes
all normal matrices and “most” random nonnormal ones) can be diagonalized by ag
similarity transformation, that the columns of the transformation matrix that effects
the diagonalization are the right eigenvectors, and that the rows of its inverse ar
the left eigenvectors.

For real, symmetric matrices, the eigenvectors are real and orthonormal, so th
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformation of the form

&B1snoy
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A — z'.A.Z (11.0.13
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While real nonsymmetric matrices can be diagonalized in their usual case of complet
eigenvectors, the transformation matrix is not necessarily real. It turns out, however
that a real similarity transformation can “almost” do the job. It can reduce the matrix
down to a form with little two-by-two blocks along the diagonal, all other elements
zero. Each two-by-two block corresponds to a complex-conjugate pair of complex:
eigenvalues. We will see this idea exploited in some routines given later in the chapter.

The “grand strategy” of virtually all modern eigensystem routines is to nudge
the matrixA towards diagonal form by a sequence of similarity transformations,
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460 Chapter 11.  Eigensystems

If we get all the way to diagonal form, then the eigenvectors are the columns of
the accumulated transformation

Xp=Py-Py-Ps-... (11.0.15

Sometimes we do not want to go all the way to diagonal form. For example, if we are
interested only in eigenvalues, not eigenvectors, it is enough to transform the matri
A to be triangular, with all elements below (or above) the diagonal zero. In thISE
case the diagonal elements are already the eigenvalues, as you can see by mentaf|
evaluating (11.0.2) using expansion by minors. 5

There are two rather different sets of techniques for implementing the grand
strategy (11.0.14). It turns out that they work rather well in combination, so most
modern eigensystem routines use both. The first set of techniques constructs indivic
ual P;’s as explicit “atomic” transformations designed to perform specific tasks, for
example zeroing a particular off-diagonal element (Jacobi transforméfiart,), or
a whole particular row or column (Householder transformatidad,.2; elimination
method§11.5). In general, a finite sequence of these simple transformations canno
completely diagonalize a matrix. There are then two choices: either use the fini
sequence of transformations to go most of the way (e.g., to some special form li
tridiagonal or Hessenberg, see511.2 anc;11.5 below) and follow up with the second
set of techniques about to be mentioned; or else iterate the finite sequence of simp
transformations over and over until the deviation of the matrix from diagonal is :
negligibly small. This latter approach is conceptually simplest, so we will discuss
it in the next section; however, faN greater than~ 10, it is computationally
inefficient by a roughly constant facter 5.

The second set of techniques, calliadtorization methods, is more subtle.
Suppose that the matri& can be factored into a left factér, and a right factor
Fr. Then
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A=F,-Fgr orequivalenty F;'-A=Fg (11.0.16

If we now multiply back together the factors in the reverse order, and use the secon
equation in (11.0.16) we get
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Fr-FL=F'-A-Fg (11.0.17
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which we recognize as having effected a similarity transformatior omith the
transformation matrix being ! In §11.3 andg11.6 we will discuss th€@R method
which exploits this idea.

Factorization methods also do not converge exactly in a finite number of
transformations. But the better ones do converge rapidly and reliably, and, when
following an appropriate initial reduction by simple similarity transformations, they
are the methods of choice.
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11.0 Introduction 461

“Eigenpackages of Canned Eigenroutines”

You have probably gathered by now that the solution of eigensystems is a fairly
complicated business. It is. It is one of the few subjects covered in this book for
which we donot recommend that you avoid canned routines. On the contrary, the
purpose of this chapter is precisely to give you some appreciation of what is going
on inside such canned routines, so that you can make intelligent choices about usir
them, and intelligent diagnoses when something goes wrong.
You will find that almost all canned routines in use nowadays trace their ancestry:
back to routines published in Wilkinson and ReinscHandbook for Automatic
Computation, Vol. 1, Linear Algebra [2]. This excellent reference, containing papers
by a number of authors, is the Bible of the field. A public-domain implementation
of the Handbook routines inFORTRAN is the EISPACK set of prograni8]. The
routines in this chapter are translations of eithetlaadbook or EISPACK routines,
so understanding these will take you a lot of the way towards understanding thos
canonical packages.
IMSL [4] and NAGI5] each provide proprietary implementations FIBRTRAN,
of what are essentially the Handbook routines.
A good “eigenpackage” will provide separate routines, or separate paths throug
sequences of routines, for the following desired calculations:
e all eigenvalues and no eigenvectors
¢ all eigenvalues and some corresponding eigenvectors
¢ all eigenvalues and all corresponding eigenvectors
The purpose of these distinctions is to save compute time and storage; it is wastef
to calculate eigenvectors that you don't need. Often one is interested only in
the eigenvectors corresponding to the largest few eigenvalues, or largest few i
magnitude, or few that are negative. The method usually used to calculate “som
eigenvectors is typically more efficient than calculating all eigenvectors if you desir
fewer than about a quarter of the eigenvectors.
A good eigenpackage also provides separate paths for each of the abov
calculations for each of the following special forms of the matrix:
e real, symmetric, tridiagonal
e real, symmetric, banded (only a small number of sub- and superdiagonals
are nonzero)
real, symmetric
real, nonsymmetric
complex, Hermitian
e complex, non-Hermitian
Again, the purpose of these distinctions is to save time and storage by uslegsthe
general routine that will serve in any particular application.
In this chapter, as a bare introduction, we give good routines for the following
paths:
¢ all eigenvalues and eigenvectors of a real, symmetric, tridiagonal matrix
(811.3)

¢ all eigenvalues and eigenvectors of a real, symmetric, mgttix {-£11.3)

e all eigenvalues and eigenvectors of a complex, Hermitian matrix
(§11.4)

¢ all eigenvalues and no eigenvectors of a real, nonsymmetric mgthg—
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462 Chapter 11.  Eigensystems

§11.6)
We also discuss, i§11.7, how to obtain some eigenvectors of nonsymmetric
matrices by the method of inverse iteration.

Generalized and Nonlinear Eigenvalue Problems
Many eigenpackages also deal with the so-cajewralized eigenproblem, [6]
A-X=MB-X (11.0.18

whereA andB are both matrices. Most such problems, whBr&s nonsingular,
can be handled by the equivalent

(B™'-A)-x=\x (11.0.19

Often A and B are symmetric andB is positive definite. The matriB ~' - A in
(11.0.19) is not symmetric, but we can recover a symmetric eigenvalue proble
by using the Cholesky decompositién= L - L7 of §2.9. Multiplying equation
(11.0.18) byL ~!, we get
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C-(LT - x)=AL"-x) (11.0.20
where
C=L"'-A-(LHT (11.0.23

The matrixC is symmetric and its eigenvalues are the same as those of the origina
problem (11.0.18); its eigenfunctions dré - x. The efficient way to fornC is
first to solve the equation

Y- LT =A (11.0.22

for the lower triangle of the matri¥. Then solve

L.C=Y (11.0.23

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

for the lower triangle of the symmetric matr@.
Another generalization of the standard eigenvalue problem is to problems
nonlinear in the eigenvalug, for example,
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(AN +BA+C)-x=0 (11.0.24
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This can be turned into a linear problem by introducing an additional unknown
eigenvectory and solving the N x 2N eigensystem,

<—A01.c _A11.3> ' <§) =A <§) (11.0.25

This technique generalizes to higher-order polynomials iA polynomial of degree
M produces a lineaM N x M N eigensystem (s€gl).
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11.1 Jacobi Transformations of a Symmetric Matrix 463

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 6. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [3]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [4]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
Chapter F02. [5]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §7.7. [6]

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [7]

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 13.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

11.1 Jacobi Transformations of a Symmetric
Matrix
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The Jacobi method consists of a sequence of orthogonal similarity transforma
tions of the form of equation (11.0.14). Each transformatioda@bi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagonal elemen
nevertheless get smaller and smaller, until the matrix is diagonal to machine preciw
sion. Accumulating the product of the transformations as you go gives the matrix g
of eigenvectors, equation (11.0.15), while the elements of the final diagonal matrix
are the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices. For
matrices of order greater than about 10, say, the algorithm is slower, by a significan
constant factor, than th@ R method we shall give i§11.3. However, the Jacobi
algorithm is much simpler than the more efficient methods. We thus recommend i
for matrices of moderate order, where expense is not a major consideration.

The basic Jacobi rotatioR,, is a matrix of the form
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Ppg = 1 (11.1.3

1

Here all the diagonal elements are unity except for the two eleneénteows (and
columns)y andq. All off-diagonal elements are zero except the two elemeratsd
—s. The numbers ands are the cosine and sine of a rotation angleoc?+ s = 1.
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