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*fret=dbrent(ax,xx,bx,f1dim,df1dim,TOL,&xmin);
for (j=1;j<=n;j++) { Construct the vector results to return.

xi[j] *= xmin;
p[j] += xi[j];

}
free_vector(xicom,1,n);
free_vector(pcom,1,n);

}

#include "nrutil.h"

extern int ncom; Defined in dlinmin.
extern float *pcom,*xicom,(*nrfunc)(float []);
extern void (*nrdfun)(float [], float []);

float df1dim(float x)
{

int j;
float df1=0.0;
float *xt,*df;

xt=vector(1,ncom);
df=vector(1,ncom);
for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
(*nrdfun)(xt,df);
for (j=1;j<=ncom;j++) df1 += df[j]*xicom[j];
free_vector(df,1,ncom);
free_vector(xt,1,ncom);
return df1;

}

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal ofvariable metric methods, which are sometimes calledquasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so thatN such line minimizations
lead to the exact minimum of a quadratic form inN dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
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and updates the information that is accumulated. Instead of requiring intermediate
storage on the order ofN , the number of dimensions, it requires a matrix of size
N × N . Generally, for any moderateN , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on.We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One is theDavidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simplyFletcher-Powell). The
other goes by the nameBroyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope[1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary functionf(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any
information about the values of the quadratic form’s parametersA and b, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matrixA−1, that is, to construct a sequence
of matricesHi with the property,

lim
i→∞

Hi = A−1 (10.7.1)

Even better if the limit is achieved afterN iterations instead of∞.
The reason that variable metric methods are sometimes called quasi-Newton

methods can now be explained. Consider finding a minimum by using Newton’s
method to search for a zero of the gradient of the function. Near the current point
xi, we have to second order

f(x) = f(xi) + (x − xi) · ∇f(xi) + 1
2 (x − xi) · A · (x − xi) (10.7.2)

so
∇f(x) = ∇f(xi) + A · (x − xi) (10.7.3)

In Newton’s method we set∇f(x) = 0 to determine the next iteration point:

x − xi = −A−1 · ∇f(xi) (10.7.4)

The left-hand side is the finite step we need take to get to the exact minimum; the
right-hand side is known once we have accumulated an accurateH ≈ A −1.

The “quasi” in quasi-Newton is because we don’t use the actual Hessian matrix
of f , but instead use our current approximation of it. This is oftenbetter than
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using the true Hessian. We can understand this paradoxical result by considering the
descent directions of f at xi. These are the directionsp along whichf decreases:
∇f ·p < 0. For the Newton direction (10.7.4) to be a descent direction, we must have

∇f(xi) · (x − xi) = −(x − xi) · A · (x − xi) < 0 (10.7.5)

which is true ifA is positive definite. In general, far from a minimum, we have no
guarantee that the Hessian is positive definite. Taking the actual Newton step with
the real Hessian can move us to points where the function isincreasing in value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetric
approximation toA (usually the unit matrix) and build up the approximatingH i’s
in such a way that the matrixHi remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close
to the minimum, the updating formula approaches the true Hessian and we enjoy
the quadratic convergence of Newton’s method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definiteA need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy described in§9.7 to choose a step along thedirection of
the Newton stepp, but not necessarily all the way.

We won’t rigorously derive the DFP algorithm for takingH i into Hi+1; you
can consult[3] for clear derivations. Following Brodlie (in[2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4) atx i+1 from that same equation atxi gives

xi+1 − xi = A−1 · (∇fi+1 −∇fi) (10.7.6)

where∇fj ≡ ∇f(xj). Having made the step fromxi to xi+1, we might reasonably
want to require that the new approximationH i+1 satisfy (10.7.6) as if it were
actually A−1, that is,

xi+1 − xi = Hi+1 · (∇fi+1 −∇fi) (10.7.7)

We might also imagine that the updating formula should be of the formH i+1 =
Hi + correction.

What “objects” are around out of which to construct a correction term? Most
notable are the two vectorsxi+1 − xi and ∇fi+1 − ∇fi; and there is alsoHi.
There are not infinitely many natural ways of making a matrix out of these objects,
especially if (10.7.7) must hold! One such way, theDFP updating formula, is

Hi+1 = Hi +
(xi+1 − xi) ⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

− [Hi · (∇fi+1 −∇fi)] ⊗ [Hi · (∇fi+1 −∇fi)]
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.8)

where⊗ denotes the “outer” or “direct” product of two vectors, a matrix: Theij
component ofu⊗v isuivj . (You might want to verify that 10.7.8 does satisfy 10.7.7.)
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TheBFGS updating formula is exactly the same, but with one additional term,

· · · + [(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)] u ⊗ u (10.7.9)

whereu is defined as the vector

u ≡ (xi+1 − xi)
(xi+1 − xi) · (∇fi+1 −∇fi)

− Hi · (∇fi+1 −∇fi)
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.10)

(You might also verify that this satisfies 10.7.7.)
You will have to take on faith — or else consult[3] for details of — the “deep”

result that equation (10.7.8), with or without (10.7.9), does in fact converge toA −1

in N steps, iff is a quadratic form.
Here now is the routinedfpmin that implements the quasi-Newton method, and

useslnsrch from §9.7. As mentioned at the end ofnewt in §9.7, this algorithm
can fail if your variables are badly scaled.

#include <math.h>
#include "nrutil.h"
#define ITMAX 200 Maximum allowed number of iterations.
#define EPS 3.0e-8 Machine precision.
#define TOLX (4*EPS) Convergence criterion on x values.
#define STPMX 100.0 Scaled maximum step length allowed in

line searches.
#define FREEALL free_vector(xi,1,n);free_vector(pnew,1,n); \
free_matrix(hessin,1,n,1,n);free_vector(hdg,1,n);free_vector(g,1,n); \
free_vector(dg,1,n);

void dfpmin(float p[], int n, float gtol, int *iter, float *fret,
float(*func)(float []), void (*dfunc)(float [], float []))

Given a starting point p[1..n] that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func, using
its gradient as calculated by a routine dfunc. The convergence requirement on zeroing the
gradient is input as gtol. Returned quantities are p[1..n] (the location of the minimum),
iter (the number of iterations that were performed), and fret (the minimum value of the
function). The routine lnsrch is called to perform approximate line minimizations.
{

void lnsrch(int n, float xold[], float fold, float g[], float p[], float x[],
float *f, float stpmax, int *check, float (*func)(float []));

int check,i,its,j;
float den,fac,fad,fae,fp,stpmax,sum=0.0,sumdg,sumxi,temp,test;
float *dg,*g,*hdg,**hessin,*pnew,*xi;

dg=vector(1,n);
g=vector(1,n);
hdg=vector(1,n);
hessin=matrix(1,n,1,n);
pnew=vector(1,n);
xi=vector(1,n);
fp=(*func)(p); Calculate starting function value and gra-

dient,(*dfunc)(p,g);
for (i=1;i<=n;i++) { and initialize the inverse Hessian to the

unit matrix.for (j=1;j<=n;j++) hessin[i][j]=0.0;
hessin[i][i]=1.0;
xi[i] = -g[i]; Initial line direction.
sum += p[i]*p[i];

}
stpmax=STPMX*FMAX(sqrt(sum),(float)n);
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for (its=1;its<=ITMAX;its++) { Main loop over the iterations.
*iter=its;
lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,&check,func);
The new function evaluation occurs in lnsrch; save the function value in fp for the
next line search. It is usually safe to ignore the value of check.
fp = *fret;
for (i=1;i<=n;i++) {

xi[i]=pnew[i]-p[i]; Update the line direction,
p[i]=pnew[i]; and the current point.

}
test=0.0; Test for convergence on ∆x.
for (i=1;i<=n;i++) {

temp=fabs(xi[i])/FMAX(fabs(p[i]),1.0);
if (temp > test) test=temp;

}
if (test < TOLX) {

FREEALL
return;

}
for (i=1;i<=n;i++) dg[i]=g[i]; Save the old gradient,
(*dfunc)(p,g); and get the new gradient.
test=0.0; Test for convergence on zero gradient.
den=FMAX(*fret,1.0);
for (i=1;i<=n;i++) {

temp=fabs(g[i])*FMAX(fabs(p[i]),1.0)/den;
if (temp > test) test=temp;

}
if (test < gtol) {

FREEALL
return;

}
for (i=1;i<=n;i++) dg[i]=g[i]-dg[i]; Compute difference of gradients,
for (i=1;i<=n;i++) { and difference times current matrix.

hdg[i]=0.0;
for (j=1;j<=n;j++) hdg[i] += hessin[i][j]*dg[j];

}
fac=fae=sumdg=sumxi=0.0; Calculate dot products for the denomi-

nators.for (i=1;i<=n;i++) {
fac += dg[i]*xi[i];
fae += dg[i]*hdg[i];
sumdg += SQR(dg[i]);
sumxi += SQR(xi[i]);

}
if (fac > sqrt(EPS*sumdg*sumxi)) { Skip update if fac not sufficiently posi-

tive.fac=1.0/fac;
fad=1.0/fae;
The vector that makes BFGS different from DFP:
for (i=1;i<=n;i++) dg[i]=fac*xi[i]-fad*hdg[i];
for (i=1;i<=n;i++) { The BFGS updating formula:

for (j=i;j<=n;j++) {
hessin[i][j] += fac*xi[i]*xi[j]
-fad*hdg[i]*hdg[j]+fae*dg[i]*dg[j];
hessin[j][i]=hessin[i][j];

}
}

}
for (i=1;i<=n;i++) { Now calculate the next direction to go,

xi[i]=0.0;
for (j=1;j<=n;j++) xi[i] -= hessin[i][j]*g[j];

}
} and go back for another iteration.
nrerror("too many iterations in dfpmin");
FREEALL

}
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Quasi-Newton methods likedfpmin work well with the approximate line
minimization done bylnsrch. The routinespowell (§10.5) andfrprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

Although rare, it can conceivably happen that roundoff errors cause the matrixHi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singularHi’s tend to give
subsequentHi’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in§10.4: In case
of any doubt, you shouldrestart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metric
methods deal with the problem in a more sophisticated way.

Instead of building up an approximation toA−1, it is possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

A · (x − xi) = −∇f(xi) (10.7.11)

At first glance this seems like a bad idea, since solving (10.7.11) is a process of order
N3 — and anyway, how does this help the roundoff problem? The trick is not to storeA but
rather a triangular decomposition ofA, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition ofA is of orderN2 and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray[1,2].
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10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledlinear optimization,
concerns itself with the following problem: ForN independent variablesx 1, . . . , xN ,
maximize the function

z = a01x1 + a02x2 + · · · + a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)


